首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Petrovan RJ  Ruf W 《Biochemistry》2000,39(47):14457-14463
Functional regulation by cofactors is fundamentally important for the highly ordered, consecutive activation of the coagulation cascade. The initiating protease of the coagulation system, factor VIIa (VIIa), retains zymogen-like features after proteolytic cleavage of the activating Arg(15)-Ile(16) peptide bond and requires the binding of the cofactor tissue factor (TF) to stabilize the protease domain in an active enzyme conformation. Structural comparison of TF-bound and free VIIa failed to provide a conclusive mechanism for this catalytic activation. This study provides novel insight into the cofactor-dependent regulation of VIIa by demonstrating that the side chain of Phe(225), an aromatic residue that is common to allosterically regulated serine proteases, is necessary for optimal TF-mediated activation of VIIa's catalytic function. However, mutation of Phe(225) did not abolish the cofactor-induced stabilization of the Ile(16)-Asp(194) salt bridge, previously considered the primary switch mechanism for activating VIIa. Moreover, mutation of other residue side chains in the VIIa protease domain resulted in a reduced level of or no stabilization of the amino-terminal insertion site upon TF binding, with little or no effect on the TF-mediated enhancement of catalysis. This study thus establishes a crucial role for the aromatic Phe(225) residue position in the allosteric network that transmits the activating switch from the cofactor interface to the catalytic cleft, providing insight into the highly specific conformational linkages that regulate serine protease function.  相似文献   

2.
The upstream coagulation enzymes are homologous trypsin-like serine proteases that typically function in enzyme-cofactor complexes, exemplified by coagulation factor VIIa (VIIa), which is allosterically activated upon binding to its cell surface receptor tissue factor (TF). TF cooperates with VIIa to create a bimolecular recognition surface that serves as an exosite for factor X binding. This study analyzes to what extent scissile bond docking to the catalytic cleft contributes to macromolecular substrate affinity. Mutation of the P1 Arg residue in factor X to Gln prevented activation by the TF.VIIa complex but did not reduce macromolecular substrate affinity for TF.VIIa. Similarly, mutations of the S and S' subsites in the catalytic cleft of the enzyme VIIa failed to reduce affinity for factor X, although the affinity for small chromogenic substrates and the efficiency of factor X scissile bond cleavage were reduced. Thus, docking of the activation peptide bond to the catalytic cleft of this enzyme-cofactor complex does not significantly contribute to affinity for macromolecular substrate. Rather, it appears that the creation of an extended macromolecular substrate recognition surface involving enzyme and cofactor is utilized to generate substrate specificity between the highly homologous, regulatory proteases of the coagulation cascade.  相似文献   

3.
Petrovan RJ  Ruf W 《Biochemistry》2002,41(30):9302-9309
Factor VIIa (VIIa) remains in a zymogen-like state following proteolytic activation and depends on interactions with the cofactor tissue factor (TF) for function. Val(21), Glu(154), and Met(156) are residues that are spatially close in available zymogen and enzyme structures, despite major conformational differences in the corresponding loop segments. This residue triad displays unusual side chain properties in comparison to the properties of other coagulation serine proteases. By mutagenesis, we demonstrate that these residues cooperate to stabilize the enzyme conformation and to enhance the affinity for TF. In zymogen VII, however, substitution of the triad did not change the cofactor affinity, further emphasizing the crucial role of the activation pocket in specifically stabilizing the active enzyme conformation. In comparison to VIIa(Q156), the triple mutant VIIa(N21I154Q156) had a stabilized amino-terminal Ile(16)-Asp(194) salt bridge and enhanced catalytic function. However, proteolytic and amidolytic activities of free VIIa variants were not concordantly increased. Rather, a negatively charged Asp at position 21 was the critical factor that determined whether an amidolytically more active VIIa variant also more efficiently activated the macromolecular substrate. These data thus demonstrate an unexpected complexity by which the zymogenicity-determining triad in the activation pocket of VIIa controls the active enzyme conformation and contributes to exosite interactions with the macromolecular substrate.  相似文献   

4.
Macromolecular substrate docking with coagulation enzyme-cofactor complexes involves multiple contacts distant from the enzyme's catalytic cleft. Here we characterize the binding of the Gla-domain of macromolecular substrate coagulation factor X to the complex of tissue factor (TF) and VIIa. Site-directed mutagenesis of charged residue side chains in the VIIa Gla-domain identified Arg-36 as being important for macromolecular substrate docking. Ala substitution for Arg-36 resulted in an increased KM and a decreased rate of X activation. X with a truncated Gla-domain was activated by mutant and wild-type VIIa at indistinguishable rates, demonstrating that Arg-36 interactions require a properly folded Gla-domain of the macromolecular substrate. VIIa Arg-36 was also required for effective docking of the X Gla-domain in the absence of phospholipid, demonstrating that the Gla-domain of VIIa participates in protein-protein interactions with X. In the absence of TF, the mutant VIIa had essentially normal function, indicating that the cofactor positions VIIa's Gla-domain for optimal macromolecular substrate docking. Computational docking suggests multiple charge complementary contacts of the X Gla-domain with TF.VIIa. A prominent interaction is made by the functionally important X residue Gla-14 with the center of the extended docking site created by residues in the carboxyl module of TF and the contiguous VIIa Gla-domain. These data demonstrate the functional importance of interactions of the Gla-domains of enzyme and substrate, and begin to elucidate the molecular details of the ternary TF.VIIa.X complex.  相似文献   

5.
BACKGROUND: Coagulation factor VIIa (FVIIa) contains a Trypsin-like serine protease domain and initiates the cascade of proteolytic events leading to Thrombin activation and blood clot formation. Vascular injury allows formation of the complex between circulating FVIIa and its cell surface bound obligate cofactor, Tissue Factor (TF). Circulating FVIIa is nominally activated but retains zymogen-like character and requires TF in order to complete the zymogen-to-enzyme transition. The manner in which TF exerts this effect is unclear. The structure of TF/FVIIa is known. Knowledge of the zymogen structure is helpful for understanding the activation transition in this system. RESULTS: The 2 A resolution crystal structure of a zymogen form of FVII comprising the EGF2 and protease domains is revealed in a complex with the exosite binding inhibitory peptide A-183 and a vacant active site. The activation domain, which includes the N terminus, differs in ways beyond those that are expected for zymogens in the Trypsin family. There are large differences in the TF binding region. An unprecedented 3 residue shift in registration between beta strands B2 and A2 in the C-terminal beta barrel and hydrogen bonds involving Glu154 provide new insight into conformational changes accompanying zymogen activation, TF binding, and enzymatic competence. CONCLUSIONS: TF-mediated allosteric control of the activity of FVIIa can be rationalized. The reregistering beta strand connects the TF binding region and the N-terminal region. The zymogen registration allows H bonds that prevent the N terminus from attaining a key salt bridge with the active site. TF binding may influence an equilibrium by selecting the enzymatically competent registration.  相似文献   

6.
Serine protease activation is typically controlled by proteolytic cleavage of the scissile bond, resulting in spontaneous formation of the activating Ile(16)-Asp(194) salt bridge. The initiating coagulation protease factor VIIa (VIIa) differs by remaining in a zymogen-like conformation that confers the control of catalytic activity to the obligatory cofactor and receptor tissue factor (TF). This study demonstrates that the unusual hydrophobic Met(156) residue contributes to the propensity of the VIIa protease domain to remain in a zymogen-like conformation. Mutation of Met(156) to Gln, which is found in the same position of the highly homologous factor IX, had no influence on the amidolytic and proteolytic activity of TF-bound VIIa. Furthermore, the mutation did not appreciably stabilize the labile Ile(16)-Asp(194) salt bridge in the absence of cofactor. VIIa(Gln156) had increased affinity for TF, consistent with a long range conformational effect that stabilized the cofactor binding site in the VIIa protease domain. Notably, in the absence of cofactor, amidolytic and proteolytic function of VIIa(Gln156) were enhanced 3- and 9-fold, respectively, compared with wild-type VIIa. The mutation thus selectively influenced the catalytic activity of free VIIa, identifying the Met(156) residue position as a determinant for the zymogen-like properties of free VIIa.  相似文献   

7.
The protease domain of coagulation factor VIIa (FVIIa) is homologous to trypsin with a similar active site architecture. The catalytic function of FVIIa is regulated by allosteric modulations induced by binding of divalent metal ions and the cofactor tissue factor (TF). To further elucidate the mechanisms behind these transformations, the effects of Zn2+ binding to FVIIa in the free form and in complex with TF were investigated. Equilibrium dialysis suggested that two Zn2+ bind with high affinity to FVIIa outside the N-terminal gamma-carboxyglutamic acid (Gla) domain. Binding of Zn2+ to FVIIa, which was influenced by the presence of Ca2+, resulted in decreased amidolytic activity and slightly reduced affinity for TF. After binding to TF, FVIIa was less susceptible to zinc inhibition. Alanine substitutions for either of two histidine residues unique for FVIIa, His216, and His257, produced FVIIa variants with decreased sensitivity to Zn2+ inhibition. A search for putative Zn2+ binding sites in the crystal structure of the FVIIa protease domain was performed by Grid calculations. We identified a pair of Zn2+ binding sites in the Glu210-Glu220 Ca2+ binding loop adjacent to the so-called activation domain canonical to serine proteases. Based on our results, we propose a model that describes the conformational changes underlying the Zn2+-mediated allosteric down-regulation of FVIIa's activity.  相似文献   

8.
Blood coagulation is triggered by the formation of a complex between factor VIIa (FVIIa) and its cofactor, tissue factor (TF). The gamma-carboxyglutamic acid-rich domain of FVIIa docks with the C-terminal domain of TF, the EGF1 domain of FVIIa contacts both domains of TF, and the EGF2 domain and protease domain (PD) form a continuous surface that sits on the N-terminal domain of TF. Our aim was to investigate the conformational changes that occur in the sTF.PD binding region when different types of inhibitors, i.e., one active-site inhibitor (FFR-chloromethyl ketone (FFR)), two different peptide exosite inhibitors (E-76 and A-183), and the natural inhibitor tissue factor pathway inhibitor (TFPI), were allowed to bind to FVIIa. For this purpose, we constructed two sTF mutants (Q37C and E91C). By the aid of site-directed labeling technique, a fluorescent label was attached to the free cysteine. The sTF.PD interface was affected in position 37 by the binding of FFR, TFPI, and E-76, i.e., a more compact structure was sensed by the probe, while for position 91 located in the same region no change in the surrounding structure was observed. Thus, the active site inhibitors FFR and TFPI, and the exosite inhibitor E-76 have similar effects on the probe in position 37 of sTF, despite their differences in size and inhibition mechanism. The allosteric changes at the active site caused by binding of the exosite inhibitor E-76 in turn induce similar conformational changes in the sTF.PD interface as does the binding of the active site inhibitors. A-183, on the other hand, did not affect position 37 in sTF, indicating that the A-183 inhibition mechanism is different from that of E-76.  相似文献   

9.
《Biophysical journal》2019,116(10):1823-1835
A critical step in injury-induced initiation of blood coagulation is the formation of the complex between the trypsin-like protease coagulation factor VIIa (FVIIa) and its cofactor tissue factor (TF), which converts FVIIa from an intrinsically poor enzyme to an active protease capable of activating zymogens of downstream coagulation proteases. Unlike its constitutively active ancestor trypsin, FVIIa is allosterically activated (by TF). Here, ensemble refinement of crystallographic structures, which uses multiple copies of the entire structure as a means of representing structural flexibility, is applied to explore the impacts of inhibitor binding to trypsin and FVIIa, as well as cofactor binding to FVIIa. To assess the conformational flexibility and its role in allosteric pathways in these proteases, main-chain hydrogen bond networks are analyzed by calculating the hydrogen-bond propensity. Mapping pairwise propensity differences between relevant structures shows that binding of the inhibitor benzamidine to trypsin has a minor influence on the protease flexibility. For FVIIa, in contrast, the protease domain is “locked” into the catalytically competent trypsin-like configuration upon benzamidine binding as indicated by the stabilization of key structural features: the nonprime binding cleft and the oxyanion hole are stabilized, and the effect propagates from the active site region to the calcium-binding site and to the vicinity of the disulphide bridge connecting with the light chain. TF binding to FVIIa furthermore results in stabilization of the 170 loop, which in turn propagates an allosteric signal from the TF-binding region to the active site. Analyses of disulphide bridge energy and flexibility reflect the striking stability difference between the unregulated enzyme and the allosterically activated form after inhibitor or cofactor binding. The ensemble refinement analyses show directly, for the first time to our knowledge, whole-domain structural footprints of TF-induced allosteric networks present in x-ray crystallographic structures of FVIIa, which previously only have been hypothesized or indirectly inferred.  相似文献   

10.
High affinity binding of factor VIIa (VIIa) to its cellular receptor tissue factor (TF), as well as association of factor X with phospholipid are required for optimal assembly of the extrinsic activation complex. In addition to the interactions of substrate with phospholipid and enzyme, we here provide evidence that cofactor residues Lys-165 and Lys-166 specifically contribute to the recognition of macromolecular substrate. Ala for Lys replacement in TFA165A166 was compatible with high affinity binding of VIIa when analyzed on cell surfaces as well as in the absence of phospholipid. Dissociation of TFA165A166.VIIa did not occur with a faster rate compared to TF.VIIa, further supporting unaltered VIIa binding function of TFA165A166. Cleavage of chromogenic peptidyl substrate by TFA165A166.VIIa complexes was not diminished, demonstrating that TFA165A166 supported enhancement of catalytic function of the VIIa protease domain. In contrast, factor X activation was reduced in the presence and absence of phospholipid. Further, TFA165A166 effectively competed with wild-type TF in the cleavage of factor X at limited VIIa concentrations. Selective reduction in macromolecular substrate hydrolysis combined with normal VIIa binding by TFA165A166 indicates that the cofactor TF does contribute, either directly or indirectly via specific interactions with VIIa, to factor X recognition.  相似文献   

11.
The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic properties. Extensive studies have revealed two putative pathways for this allosteric communication. Here we provide further details of this allosteric communication by investigating FVIIa loop swap variants containing the 170 loop of trypsin that display TF-independent enhanced activity. Using x-ray crystallography, we show that the introduced 170 loop from trypsin directly interacts with the FVIIa active site, stabilizing segment 215–217 and activation loop 3, leading to enhanced activity. Molecular dynamics simulations and novel fluorescence quenching studies support that segment 215–217 conformation is pivotal to the enhanced activity of the FVIIa variants. We speculate that the allosteric regulation of FVIIa activity by TF binding follows a similar path in conjunction with protease domain N terminus insertion, suggesting a more complete molecular basis of TF-mediated allosteric enhancement of FVIIa activity.  相似文献   

12.
Coagulation factor VIIa (FVIIa) belongs to a family of proteases being part of the stepwise, self-amplifying blood coagulation cascade. To investigate the impact of the mutation Met(298{156})Lys in FVIIa, we replaced the Gly(283{140})-Met(298{156}) loop with the corresponding loop of factor Xa. The resulting variant exhibited increased intrinsic activity, concurrent with maturation of the active site, a less accessible N-terminus, and, interestingly, an altered macromolecular substrate specificity reflected in an increased ability to cleave factor IX (FIX) and a decreased rate of FX activation compared to that of wild-type FVIIa. In complex with tissue factor, activation of FIX, but not of FX, returned to normal. Deconvolution of the loop graft in order to identify important side chain substitutions resulted in the mutant Val(158{21})Asp/Leu(287{144})Thr/Ala(294{152})Ser/Glu(296{154}) Ile/Met(298{156})Lys-FVIIa with almost the same activity and specificity profile. We conclude that a lysine residue in position 298{156} of FVIIa requires a hydrophilic environment to be fully accommodated. This position appears critical for substrate specificity among the proteases of the blood coagulation cascade due to its prominent position in the macromolecular exosite and possibly via its interaction with the corresponding position in the substrate (i.e. FIX or FX).  相似文献   

13.
The substrate specificity of thrombin is regulated by binding of macromolecular substrates and effectors to exosites I and II. Exosites I and II have been reported to be extremely linked allosterically, such that binding of a ligand to one exosite results in near-total loss of affinity for ligands at the alternative exosite, whereas other studies support the independence of the interactions. An array of fluorescent thrombin derivatives and fluorescein-labeled hirudin(54-65) ([5F]Hir(54-65)(SO(3)(-))) were used as probes in quantitative equilibrium binding studies to resolve whether the affinities of the exosite I-specific ligands, Hir(54-65)(SO(3)(-)) and fibrinogen, and of the exosite II-specific ligands, prothrombin fragment 2 and a monoclonal antibody, were affected by alternate exosite occupation. Hir(54-65)(SO(3)(-)) and fibrinogen bound to exosite I with dissociation constants of 16-28 nm and 5-7 microm, respectively, which were changed < or =2-fold by fragment 2 binding. Native thrombin and four thrombin derivatives labeled with different probes bound fragment 2 and the antibody with dissociation constants of 3-12 microm and 1.8 nm, respectively, unaffected by Hir(54-65)(SO(3)(-)). The results support a ternary complex binding model in which exosites I and II can be occupied simultaneously. The thrombin catalytic site senses individual and simultaneous binding of exosite I and II ligands differently, resulting in unique active site environments for each thrombin complex. The results indicate significant, ligand-specific allosteric coupling between thrombin exosites I and II and catalytic site perturbations but insignificant inter-exosite thermodynamic linkage.  相似文献   

14.
To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu(98), Tyr(143), Ile(151), Arg(3704), Lys(192), and Tyr(5901)) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal K(m) values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of k(cat) for S-2366 hydrolysis. All six Ala mutants displayed deficient k(cat) values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of K(i) except for K192A, and Y5901A, which displayed increased values of K(i). The integrity of the S1 binding site residue, Asp(189), utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr(143), Ile(151), Arg(3704), and Tyr(5901)) are important for S-2366 hydrolysis; Glu(98) and Lys(192) are essential for FIX but not S-2366 hydrolysis; and Lys(192) and Tyr(5901) are required for both inhibitor and macromolecular substrate interactions.  相似文献   

15.
The drug transport function of human P-glycoprotein (Pgp, ABCB1) can be inhibited by a number of pharmacological agents collectively referred to as modulators or reversing agents. In this study, we demonstrate that certain thioxanthene-based Pgp modulators with an allosteric mode of action induce a distinct conformational change in the cytosolic domain of Pgp, which alters susceptibility to proteolytic digestion. Both cis and trans-isomers of the Pgp modulator flupentixol confer considerable protection of an 80 kDa Pgp fragment against trypsin digestion, that is recognized by a polyclonal antibody specific for the NH(2)-terminal half to Pgp. The protection by flupentixol is abolished in the Pgp F983A mutant that is impaired in modulation by flupentixols, indicating involvement of the allosteric site in generating the conformational change. A similar protection to an 80 kDa fragment is conferred by ATP, its nonhydrolyzable analog ATPgammaS, and by trapping of ADP-vanadate at the catalytic domain, but not by transport substrate vinblastine or by the competitive modulator cyclosporin A, suggesting different outcomes from modulator interaction at the allosteric site and at the substrate site. In summary, we demonstrate that allosteric interaction of flupentixols with Pgp generates conformational changes that mimic catalytic transition intermediates induced by nucleotide binding and hydrolysis, which may play a crucial role in allosteric inhibition of Pgp-mediated drug transport.  相似文献   

16.
The presenilin genes were first identified as the site of missense mutations causing early onset autosomal dominant familial Alzheimer's disease. Subsequent work has shown that the presenilin proteins are the catalytic subunits of a hetero-tetrameric complex containing APH1, nicastrin and PEN-2. This complex (variously termed presenilin complex or gamma-secretase complex) performs an unusual type of proteolysis in which the transmembrane domains of Type I proteins are cleaved within the hydrophobic compartment of the membrane. This review describes some of the molecular and structural biology of this unusual enzyme complex. The presenilin complex is a bilobed structure. The head domain contains the ectodomain of nicastrin. The base domain contains a central cavity with a lateral cleft that likely provides the route for access of the substrate to the catalytic cavity within the centre of the base domain. There are reciprocal allosteric interactions between various sites in the complex that affect its function. For instance, binding of Compound E, a peptidomimetic inhibitor to the PS1 N-terminus, induces significant conformational changes that reduces substrate binding at the initial substrate docking site, and thus inhibits substrate cleavage. However, there is a reciprocal allosteric interaction between these sites such that prior binding of the substrate to the initial docking site paradoxically increases the binding of the Compound E peptidomimetic inhibitor. Such reciprocal interactions are likely to form the basis of a gating mechanism that underlies access of substrate to the catalytic site. An increasingly detailed understanding of the structural biology of the presenilin complex is an essential step towards rational design of substrate- and/or cleavage site-specific modulators of presenilin complex function.  相似文献   

17.
The catalytic activity of phenylalanine hydroxylase (PAH, phenylalanine 4-monooxygenase EC 1.14.16.1) is regulated by three main mechanisms, i.e. substrate (l-phenylalanine, L-Phe) activation, pterin cofactor inhibition and phosphorylation of a single serine (Ser16) residue. To address the molecular basis for the inhibition by the natural cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin, its effects on the recombinant tetrameric human enzyme (wt-hPAH) was studied using three different conformational probes, i.e. the limited proteolysis by trypsin, the reversible global conformational transition (hysteresis) triggered by L-Phe binding, as measured in real time by surface plasmon resonance analysis, and the rate of phosphorylation of Ser16 by cAMP-dependent protein kinase. Comparison of the inhibitory properties of the natural cofactor with the available three-dimensional crystal structure information on the ligand-free, the binary and the ternary complexes, have provided important clues concerning the molecular mechanism for the negative modulatory effects. In the binary complex, the binding of the cofactor at the active site results in the formation of stabilizing hydrogen bonds between the dihydroxypropyl side-chain and the carbonyl oxygen of Ser23 in the autoregulatory sequence. L-Phe binding triggers local as well as global conformational changes of the protomer resulting in a displacement of the cofactor bound at the active site by 2.6 A (mean distance) in the direction of the iron and Glu286 which causes a loss of the stabilizing hydrogen bonds present in the binary complex and thereby a complete reversal of the pterin cofactor as a negative effector. The negative modulatory properties of the inhibitor dopamine, bound by bidentate coordination to the active site iron, is explained by a similar molecular mechanism including its reversal by substrate binding. Although the pterin cofactor and the substrate bind at distinctly different sites, the local conformational changes imposed by their binding at the active site have a mutual effect on their respective binding affinities.  相似文献   

18.
On the basis of the structure of a HslUV complex, a mechanism of allosteric activation of the HslV protease, wherein binding of the HslU chaperone propagates a conformational change to the active site cleft of the protease, has been proposed. Here, the 3.1 A X-ray crystallographic structure of Haemophilus influenzae HslUV complexed with a vinyl sulfone inhibitor is described. The inhibitor, which reacts to form a covalent linkage to Thr1 of HslV, binds in an "antiparallel beta" manner, with hydrogen-bond interactions between the peptide backbone of the protease and that of the inhibitor, and with two leucinyl side chains of the inhibitor binding in the S1 and S3 specificity pockets of the protease. Comparison of the structure of the HslUV-inhibitor complex with that of HslV without inhibitor and in the absence of HslU reveals that backbone interactions would correctly position a substrate for cleavage in the HslUV complex, but not in the HslV protease alone, corroborating the proposed mechanism of allosteric activation. This activation mechanism differs from that of the eukaryotic proteasome, for which binding of activators opens a gated channel that controls access of substrates to the protease, but does not perturb the active site environment.  相似文献   

19.
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.  相似文献   

20.
The complex of factor VIIa (FVIIa) with tissue factor (TF) triggers coagulation by recognizing its macromolecular substrate factors IX (FIX) and X (FX) predominantly through extended exosite interactions. In addition, TF mediates unique cell-signaling properties in cancer, angiogenesis, and inflammation that involve proteolytic cleavage of protease-activated receptor 2 (PAR2). PAR2 is cleaved by FVIIa in the binary TF·FVIIa complex and by FXa in the ternary TF·FVIIa·FXa complex, but physiological roles of these signaling complexes are incompletely understood. In a screen of FVIIa protease domain mutants, three variants (Q40A, Q143N, and T151S) activated macromolecular coagulation substrates and supported signaling of the ternary TF·FVIIa-Xa complex normally but were severely impaired in binary TF·FVIIa·PAR2 signaling. The residues identified were located in the model-predicted S2′ pocket of FVIIa, and complementary PAR2 P2′ Leu-38 replacements demonstrated that the P2′ side chain was indeed crucial for PAR2 cleavage by TF·FVIIa. In addition, PAR2 was activated more efficiently by FVIIa T99Y, consistent with further contributions from the S2 subsite. The P2 residue preference of FVIIa and FXa predicted additional PAR2 mutants that were efficiently activated by TF·FVIIa but resistant to cleavage by the alternative PAR2 activator FXa. Thus, contrary to the paradigm of exosite-assisted cleavage of PAR1 by thrombin, the cofactor-associated protease FVIIa recognizes PAR2 predominantly by catalytic cleft interactions. Furthermore, the delineated molecular details of this substrate interaction enabled protein engineering of protease-selective PAR2 receptors that will aid further studies to dissect the roles of TF signaling complexes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号