首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Antennal olfactory receptor neurons located in a limited number of two types of sensilla auricillica, the rabbit-eared shoehorn and the regular shoehorn, located on the 5-30 flagellomere of the codling moth, Cydia pomonella, antenna were screened for selectivity to 11 plant compounds, the major sex pheromone component, three minor pheromone components and one behavioural antagonist. Both types of sensilla housed at least three neurons characterised by different action potential amplitudes. Neurons in both males and females responded to the plant compounds, ethyl (E,Z)-2,4-decadienoate, (+/-)-linalool, (E)-ss-farnesene, hexanol, (Z)-3-hexenyl acetate, 4,8-dimethyl-1,3,(E)7-nonatriene, nonanol, the major pheromone component codlemone [(E,E)-8,10-dodecadienol] and the minor pheromone component tetradecanol. Additionally, (E,E)-alpha-farnesene and (Z)-3-hexenol elicited responses specifically in female neurons, whereas (E,E)-farnesol elicited a specific response in a male neuron. Neurons responded to 1-3 odorants, with sometimes overlapping response spectra. A scanning electron microscopic study of the antennae of both sexes supported an earlier study, apart from that long s. trichodea were present in a wreath at the proximal margin of the flagellomere and in addition evenly distributed over the remaining surface, and a previously non-described sensillum type with external basiconic features was revealed, distributed on the proximal and medial region of the flagellomeres.  相似文献   

2.
Effects of octopamine on responses of olfactory receptor neurons of Bombyx mori males and females, specialized to the reception of pheromone components and general odorants, respectively, were compared. Injections of octopamine had no effect on the transepithelial potential of antennal sensilla trichodea in both sexes. In males, octopamine increased significantly the amplitude of receptor potentials and nerve impulse responses elicited by the pheromone components bombykol and bombykal. However, the responses of homologous female general odorant-sensitive neurons to linalool and benzoic acid were not affected. In control experiments, injection of physiological saline did not increase the responses in any neuron type.  相似文献   

3.
The olfactory epithelium of fish is heterogeneous both with respect to the types of receptor cells (ORNs) present and the families of odorant receptors expressed in these cells. As a consequence of this diversity, the transduction cascade(s) activated by odorants has yet to be unambiguously established. In the current study, electrophysiological and activity-dependent labeling techniques were used to assess the role of the cyclic nucleotide-gated channel in zebrafish olfactory transduction. Both amino acid and bile salt odorants elicited robust electrophysiological responses, however, activity-dependent labeling of ORNs could be stimulated only by the amino acid odorants. An adenylate cyclase (AC) activator (forskolin) and a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine, IBMX) also elicited robust electrophysiological responses; generally larger than the responses elicited by either the amino acid or bile salt odorants. However, neither forskolin alone or a mixture of forskolin and IBMX stimulated activity-dependent labeling. Bathing the olfactory epithelium with forskolin, which presumably increased the intracellular concentration of cAMP, reduced the responses to bile salt odorants to a significantly greater extent than amino acid odorants. Collectively, these findings suggest that the transduction of amino acid input does not rely primarily on cyclic nucleotide-gated (CNG) channel activation and that CNG channel activation may be required for the transduction of bile salt input. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

4.
The ability of olfactory receptor neurons to detect female-produced sex pheromone components and a limited sample of potential host plant odours was studied by single-sensillum recordings from olfactory sensilla present on male and female antennae in Manduca sexta. The majority of pheromone-sensitive receptor neurons examined in males was specialized for detection of the two major pheromone components, E10,Z12-hexadecadienal and E10,E12,Z14-hexadecatrienal or E10,E12,E14-hexadecatrienal. New olfactory receptor neurons tuned to the minor components E10,E12-hexadecadienal and Z11-hexadecenal were found. In females, olfactory receptor neurons specific to Z11-hexadecanal were discovered. Pheromone components and host volatiles were detected by separate sets of receptor neurons.  相似文献   

5.
Laughlin JD  Ha TS  Jones DN  Smith DP 《Cell》2008,133(7):1255-1265
Detection of volatile odorants by olfactory neurons is thought to result from direct activation of seven-transmembrane odorant receptors by odor molecules. Here, we show that detection of the Drosophila pheromone, 11-cis vaccenyl acetate (cVA), is instead mediated by pheromone-induced conformational shifts in the extracellular pheromone-binding protein, LUSH. We show that LUSH undergoes a pheromone-specific conformational change that triggers the firing of pheromone-sensitive neurons. Amino acid substitutions in LUSH that are predicted to reduce or enhance the conformational shift alter sensitivity to cVA as predicted in vivo. One substitution, LUSH(D118A), produces a dominant-active LUSH protein that stimulates T1 neurons through the neuronal receptor components Or67d and SNMP in the complete absence of pheromone. Structural analysis of LUSH(D118A) reveals that it closely resembles cVA-bound LUSH. Therefore, the pheromone-binding protein is an inactive, extracellular ligand converted by pheromone molecules into an activator of pheromone-sensitive neurons and reveals a distinct paradigm for detection of odorants.  相似文献   

6.
To elucidate the signal transduction mechanisms in the turtlevomeronasal receptor neurons, the effects of forskolin, changesin mucosal Ca2+ concentrations and ruthenium red on the responsesof the accessory olfactory bulb to general odorants were examined.Forskolin elicited a large response, suggesting that there arecAMP-gated channels in the vomeronasal neurons. On the otherhand, the dependence of the responses to general odorants onCa2+ concentrations was different from that of the responseto forskolin. A large response to an odorant (n-amyl acetate)appeared after the cAMP-mediated pathway was fully desensitizedby application of 50 µM forskolin. These results suggestthat the cAMP-mediated pathway does not contribute significantlyto generation of the response to general odorants. A concentrationof 50 µM ruthenium red significantly reduced the responsesto n-amyl acetate alone and after 50 µM forskolin desensitization,suggesting that the inositol triphosphate-mediated pathway contributespartly to generation of the responses to general odorants inthe vomeronasal neurons. Chem Senses 21: 763–771, 1996.  相似文献   

7.
Moths of the subfamily Heliothinae are suitable models for comparative studies of plant odour information encoded by the olfactory system. Here we identify and functionally classify types of olfactory receptor neurons by means of electrophysiological recordings from single receptor neurons linked to gas chromatography and to mass spectrometry. The molecular receptive ranges of 14 types in the two polyphagous species Heliothis virescens and Helicoverpa armigera are presented. The receptor neurons are characterized by a narrow tuning, showing the best response to one primary odorant and weak responses to a few chemically related compounds. The most frequently occurring of the 14 types constituted the receptor neurons tuned to (+)-linalool, the enantioselectivity of which was shown by testing two samples with opposite enantiomeric ratios. These neurons, also responding to dihydrolinalool, were found to be functionally similar in the two related species. The primary odorants for 10 other receptor neuron types were identified as (3Z)-hexenyl acetate, (+)-3-carene, trans-pinocarveol, trans-verbenol, vinylbenzaldehyde, 2-phenylethanol, methyl benzoate, alpha-caryophyllene and caryophyllene oxide, respectively. Most odorants were present in several host and non-host plant species, often in trace amounts. The specificity as well as the co-localization of particular neuron types so far recorded in both species showed similarities of the olfactory systems receiving plant odour information in these two species of heliothine moths.  相似文献   

8.
The intracellular messenger cGMP (cyclic guanosine monophosphate) has been suggested to play a role in olfactory transduction in both invertebrates and vertebrates, but its cellular location within the olfactory system has remained elusive. We used cGMP immunocytochemistry to determine which antennal cells of the hawkmoth Manduca sexta are cGMP immunoreactive in the absence of pheromone. We then tested which antennal cells increase cGMP levels in response to nitric oxide (NO) and to long pheromonal stimuli, which the male encounters close to a calling female moth. In addition, we used in situ hybridization to determine which antennal cells express NO-sensitive soluble guanylyl cyclase. In response to long pheromonal stimuli with NO donors present, cGMP concentrations change in at least a subpopulation of pheromone-sensitive olfactory receptor neurons. These changes in cGMP concentrations in pheromone-dependent olfactory receptor neurons cannot be mimicked by the addition of NO donors in the absence of pheromone. NO stimulates sensilla chaetica type I and II, but not pheromone-sensitive trichoid sensilla, to high levels of cGMP accumulation as detected by immunocytochemistry. In situ hybridizations show that sensilla chaetica, but not sensilla trichodea, express detectable levels of mRNA coding for soluble guanylyl cyclase. These results suggest that intracellular rises in cGMP concentrations play a role in information processing in a subpopulation of pheromone-sensitive sensilla in Manduca sexta antennae, mediated by an NO-sensitive mechanism, but not an NO-dependent soluble guanylyl cyclase.  相似文献   

9.
Olfactory receptor neurons were isolated without enzymes from the mudpuppy, Necturus maculosus, and tested for chemosensitivity. The cells responded to odorants with changes in firing frequency and alterations in excitability that were detected with tight-seal patch electrodes using on-cell and whole-cell recording conditions. Chemosensitive cells exhibited two primary response characteristics: excitation and inhibition. Both types of primary response were observed in different cells stimulated by mixtures of amino acids as well as by the single compound L-alanine, suggesting that there may be more than one transduction pathway for some odorants. Using the normal whole-cell recording method, the chemosensitivity of competent cells washed out rapidly; a resistive whole-cell method was used to record odorant responses under current-clamp conditions. In response to chemical stimulation, excitability appeared to be modulated in several different ways in different cells: odorants induced hyperpolarizing or depolarizing receptor potentials, elicited or inhibited transient, rhythmic generator potentials, and altered excitability without changing the membrane potential or input resistance. These effects suggest that olfactory transduction is mediated through at least three different pathways with effects on four or more components of the membrane conductance. Polychotomous pathways such as these may be important for odor discrimination and for sharpening the "odor image" generated in the olfactory epithelium.  相似文献   

10.
Although multiple pathways are involved in the olfactory transduction mechanism, cAMP-dependent pathway has been considered to contribute mainly to the transduction. We examined the degree of contribution of cAMP-independent pathway to the turtle olfactory response by recording inward currents from isolated cells, nerve impulses from cilia and olfactory bulbar responses. The results obtained by the three recordings were essentially consistent with each other, but detail studies were carried out by recording the bulbar response to obtain quantitative data. Application of an odorant cocktail to the isolated olfactory neuron after injection of 1 mM cAMP from the patch pipette elicited a large inward current. Mean amplitude of inward currents evoked by the cocktail with 1 mM cAMP in the patch pipette was similar to that without cAMP in the pipette. Application of the cocktail after the response to 50 microM forskolin was adapted also induced a large inward current. Application of the odorant cocktail to the olfactory epithelium, after the response to 50 microM forskolin was adapted, brought about an appreciable increase in the impulse frequency. The bulbar response to forskolin alone reached a saturation level around 10 microM. After the response to 50 microM forskolin was adapted, 11 species of odorants were applied to the olfactory epithelium. The magnitudes of responses to the odorants after forskolin were 45-80% of those of the control responses. There was no essential difference in the degree of the suppression by forskolin between cAMP- and IP3- producing odorants classified in the rat, suggesting that certain part of the forskolin-suppressive component was brought about by nonspecific action of forskolin. Application of a membrane permeant cAMP analogue, cpt-cAMP elicited a large response, and 0.1 mM citralva after 3 mM cpt- cAMP elicited 51% of the control response which was close to the response to citralva after 50 microM forskolin. A membrane permeant cGMP analogue, db-cGMP elicited a small response and the response to 0.1 mM citralva was unaffected by db-cGMP. It was concluded that cAMP- independent (probably IP3-independent) pathway greatly contributes to the turtle olfactory transduction.  相似文献   

11.
The olfactory receptors of terrestrial animals exist in an aqueous environment, yet detect odorants that are primarily hydrophobic. The aqueous solubility of hydrophobic odorants is thought to be greatly enhanced via odorant binding proteins (OBP) which exist in the extracellular fluid surrounding the odorant receptors. We have isolated and partially sequenced 14 candidate OBPs from six insect (moth) species. All 14 represent a single homologous family based on conserved sequence domains. The 14 proteins can be divided into three subfamilies based on differences in tissue specific expression and similarities in amino acid sequences. All 14 proteins are specifically expressed in antennal olfactory tissue. Subfamily I represents previously described pheromone binding proteins (PBP), which are male-specific, associate with pheromone-sensitive neurons, and are highly variable in their sequences when compared among species. Subfamilies II and III are expressed in both male and female antennae, appear to associate with general-odorant-sensitive neurons, and are highly conserved when compared among species. The properties of the subfamily II and III proteins suggest these are general-odorant binding proteins (GOBP). The properties of the respective insect OBP subfamilies suggest that they have different odorant binding specificities. The association of different insect OBP subfamilies with distinct classes of olfactory neurons having different odorant specificities suggests that OBPs can act as selective signal filters, peripheral to the actual receptor proteins.  相似文献   

12.
Plants emit complex blends of volatiles, including chiral compounds that might be detected by vertebrates and invertebrates. Insects are ideal model organisms for studying the underlying receptor neuron mechanisms involved in olfactory discrimination of enantiomers. In the present study, we have employed two-column gas chromatography linked to recordings from single olfactory receptor neurons of Mamestra brassicae, in which separation of volatiles in a polar and a chiral column was performed. We here present the response properties of olfactory receptor neurons tuned to linalool. The narrow tuning of these receptor neurons was demonstrated by their strong responses to (R)-(-)-linalool, the weaker responses to the (+)-enantiomer as well as a few structurally related compounds, and no responses to the other numerous plant released volatiles. The enantioselectivity was verified by parallel dose-response curves, that of (R)-(-)-linalool shifted 1 log unit to the left of the (S)-(+)-linalool curve. A complete overlap of the temporal response pattern was found when comparing the responses of the same strength. Analysis of the spike amplitude and waveform indicated that the responses to the two enantiomers originated from the same neuron.  相似文献   

13.
Although many studies have reported that odorants can elicit inhibitory responses as well as excitatory responses in vertebrate olfactory receptor neurons, the cellular mechanisms that underlie this inhibition are unclear. Here we examine the inhibitory effect of odorants on newt olfactory receptor neurons using whole cell patch clamp recording. At high concentrations, odorant stimulation decreased the membrane conductance and inhibited depolarization. Various odorants (anisole, isoamyl acetate, cineole, limonene and isovaleric acid) suppressed the depolarizing current in a dose-dependent manner. Furthermore, one odorant could suppress the depolarization caused by another odorant. The depolarization caused by isoamyl acetate was inhibited by anisole in cells that were excited by isoamyl acetate but not by anisole. Odorants were able to hyperpolarize cells that were depolarized by cAMP-induced conductance. Given that this inhibitory effect of odorants can affect excitation caused by other odorants, we suggest that it might play a role in coding odorants in olfactory receptor neurons.  相似文献   

14.
Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction.  相似文献   

15.
Olfactory transduction: cross-talk between second-messenger systems   总被引:6,自引:0,他引:6  
R R Anholt  A M Rivers 《Biochemistry》1990,29(17):4049-4054
Chemosensory cilia of olfactory receptor neurons contain an adenylate cyclase which is stimulated by high concentrations of odorants. Cyclic AMP produced by this enzyme has been proposed to act as second messenger in olfactory transduction. Here we report that olfactory cilia contain calmodulin and that calmodulin potently activates olfactory adenylate cyclase by a mechanism additive to and independent from direct stimulation by odorants. Activation by calmodulin is calcium dependent and enhanced by GTP. Thus, olfactory transduction may involve a second-messenger cascade in which an odorant-induced increase in intracellular calcium concentration leads to activation of adenylate cyclase by calmodulin.  相似文献   

16.
Olfactory receptor neurons employ a diversity of signaling mechanisms for transducing and encoding odorant information. The simultaneous activation of subsets of receptor neurons provides a complex pattern of activation in the olfactory bulb that allows for the rapid discrimination of odorant mixtures. While some transduction elements are conserved among many species, some species-specificity occurs in certain features that may relate to their particular physiology and ecological niche. However, studies of olfactory transduction have been limited to a relatively small number of vertebrate and invertebrate species. To better understand the diversity and evolution of olfactory transduction mechanisms, we studied stimulus-elicited calcium fluxes in olfactory neurons from a previously unstudied mammalian species, the domestic cat. Isolated cells from cat olfactory epithelium were stimulated with odorant mixtures and biochemical agents, and cell responses were measured with calcium imaging techniques. Odorants elicited either increases or decreases in intracellular calcium; odorant-induced calcium increases were mediated either by calcium fluxes through the cell membrane or by mobilization of intracellular stores. Individual cells could employ multiple signaling mechanisms to mediate responses to different odorants. The physiological features of these olfactory neurons suggest greater complexity than previously recognized in the role of peripheral neurons in encoding complex odor stimuli. The investigation of novel and unstudied species is important for understanding the mechanisms of odorant signaling that apply to the olfactory system in general and suggests both broadly conserved and species-specific evolutionary adaptations.  相似文献   

17.
Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.  相似文献   

18.
The neurophysiology and antennal lobe projections of olfactory receptor neurons housed within short trichoid sensilla of female Heliothis virescens F. (Noctuidae: Lepidoptera) were investigated using a combination of cut-sensillum recording and cobalt-lysine staining techniques. Behaviorally relevant odorants, including intra- and inter-sexual pheromonal compounds, plant and floral volatiles were selected for testing sensillar responses. A total of 184 sensilla were categorized into 25 possible sensillar types based on odor responses and sensitivity. Sensilla exhibited both narrow (responding to few odors) and broad (responding to many odors) response spectra. Sixty-six percent of the sensilla identified were stimulated by conspecific odors; in particular, major components of the male H. virescens hairpencil pheromone (hexadecanyl acetate and octadecanyl acetate) and a minor component of the female sex pheromone, (Z)-9-tetradecenal. Following characterization of the responses, olfactory receptor neurons within individual sensilla were stained with cobalt lysine (N=39) and traced to individual glomeruli in the antennal lobe. Olfactory receptor neurons with specific responses to (Z)-9-tetradecenal, a female H. virescens sex pheromone component, projected to the female-specific central large female glomerulus (cLFG) and other glomeruli. Terminal arborizations from sensillar types containing olfactory receptor neurons sensitive to male hairpencil components and plant volatiles were also localized to distinct glomerular locations. This information provides insight into the representation of behaviorally relevant odorants in the female moth olfactory system. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
Electrophysiological responses of olfactory bulb neurons todifferent odorants have been presented and discussed with referenceto homologous properties of olfactory receptor cells. This paperdeals with further mathematical processings of part (experimentA) of these original data and proposes a comparison with a similarstudy performed in receptor cells, using the same odorants presentedat the same concentrations. In the olfactory bulb the patternof similarities and differences among odorants was found tobe almost the same whether the mathematical processings wereapplied to the odor-evoked discharge frequencies or to excitatoryresponses considered separately. By contrast, separate processingof inhibitory responses led to a different organization of odorantsimilarities, indicating that inhibitory responses were lessdiscriminating than excitatory responses. This was discussedin relation to the synaptic organization of the olfactory bulb.The comparison of these findings with those previously obtainedin receptor cells showed indisputable resemblances between thepatterns of discrimination among odorants at both levels ofthe olfactory pathways, especially in the grouping of some odorantsin pairs and in the overall organization of the olfactory spaceas determined by factor analysis. The findings also suggestedthat odorant discrimination was slightly improved in the olfactorybulb but no sign of a novel, specific odour categorization couldbe found.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号