首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A great deal is known about the influence of dispersal on species that interact via competition or predation, but very little is known about the influence of dispersal on species that interact via both competition and predation. Here, I investigate the influence of dispersal on the coexistence and abundance-productivity relationships of species that engage in intraguild predation (IGP: competing species that prey on each other). I report two key findings. First, dispersal enhances coexistence when a trade-off between resource competition and IGP is strong and/or when the Intraguild Prey has an overall advantage, and impedes coexistence when the trade-off is weak and/or when the Intraguild Predator has an overall advantage. Second, the Intraguild Prey's abundance-productivity relationship depends crucially on the dispersal rate of the Intraguild Predator, but the Intraguild Predator's abundance-productivity relationship is unaffected by its own dispersal rate or that of the Intraguild Prey. This difference arises because the two species engage in both a competitive interaction as well as an antagonistic (predator-prey) interaction. The Intraguild Prey, being the intermediate consumer, has to balance the conflicting demands of resource acquisition and predator avoidance, while the Intraguild Predator has to contend only with resource acquisition. Thus, the Intraguild Predator's abundance increases monotonically with resource productivity regardless of either species' dispersal rate, while the Intraguild Prey's abundance-productivity relationship can increase, decrease, or become hump-shaped with increasing productivity depending on the Intraguild Predator's dispersal rate. The important implication is that a species' trophic position determines the effectiveness of dispersal in sampling spatial environmental heterogeneity. The dispersal behavior of a top predator is likely to have a stronger effect on coexistence and spatial patterns of abundance than the dispersal behavior of an intermediate consumer.  相似文献   

2.
3.
1. Ecological trade‐offs in ant (Hymenoptera: Formicidae) assemblages and their implications for coexistence boast a rich history in entomology. Yet investigations of trade‐offs have largely been limited to homogeneous environments. We examined how environmental context modifies trade‐off expression in an ant assemblage spanning a heterogeneous region in central Florida, U.S.A. 2. We examined how trade‐off expression is altered among two contrasting habitat types: open shrub and forest. We tested for the presence of the dominance‐discovery trade‐off and two dominance‐thermal tolerance trade‐offs by estimating behavioral dominance, discovery ability, and thermal tolerance (foraging thermal limit, lethal temperature, and maximal abundance temperature) for a wide range of interacting ant species. 3. We found significantly linear dominance hierarchies in both shrub and forest habitats, showing dominant species out‐compete subordinates for food resources. In thermally stressful shrub habitats, subordinates exhibit higher thermal tolerances, take greater thermal risks, and reach maximum forager abundances at higher temperatures than do dominant species. This suggests temperature mediated trade‐offs control coexistence in shrub habitat. In thermally moderate forest habitat, we found limited evidence for trade‐offs between competitive dominance and resource discovery or between dominance and thermal traits, implying other processes control coexistence. These results demonstrate that trade‐offs controlling ant coexistence may be contingent on environmental context.  相似文献   

4.
This paper investigates the effect of a dynamic landscape on the persistence of many interacting species. We develop a multi-species community model with an evolving landscape in which the creation and destruction of habitat are dynamic and local in space. Species interactions are also local involving hierarchical competitive trade-offs. We show that dynamic landscapes can reverse the trend of increasing species richness with higher fragmentation observed in static landscapes. The increase in the species-area exponent from a homogeneous to a fragmented landscape does not occur when dynamics are turned on. Thus, temporal aspects of the processes that generate and destroy habitat appear dominant relative to spatial characteristics. We also demonstrate, however, that temporal and spatial aspects interact to influence the persistence time of individual species, and therefore, rank-abundance curves. Specifically, persistence in the model increases in habitats with faster local turnover because of the presence of dynamic corridors.  相似文献   

5.
Microbial communities in fluctuating environments, such as oceans or the human gut, contain a wealth of diversity. This diversity contributes to the stability of communities and the functions they have in their hosts and ecosystems. To improve stability and increase production of beneficial compounds, we need to understand the underlying mechanisms causing this diversity. When nutrient levels fluctuate over time, one possibly relevant mechanism is coexistence between specialists on low and specialists on high nutrient levels. The relevance of this process is supported by the observations of coexistence in the laboratory, and by simple models, which show that negative frequency dependence of two such specialists can stabilize coexistence. However, as microbial populations are often large and fast growing, they evolve rapidly. Our aim is to determine what happens when species can evolve; whether evolutionary branching can create diversity or whether evolution will destabilize coexistence. We derive an analytical expression of the invasion fitness in fluctuating environments and use adaptive dynamics techniques to find that evolutionarily stable coexistence requires a special type of trade-off between growth at low and high nutrients. We do not find support for the necessary evolutionary trade-off in data available for the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae on glucose. However, this type of data is scarce and might exist for other species or in different conditions. Moreover, we do find evidence for evolutionarily stable coexistence of the two species together. Since we find this coexistence in the scarce data that are available, we predict that specialization on resource level is a relevant mechanism for species diversity in microbial communities in fluctuating environments in natural settings.  相似文献   

6.
The clustering of individuals that results from limited dispersal is a double‐edged sword: although it allows for local interactions to be mostly among related individuals, it also results in increased local competition. Here I show that, because they mitigate local competition, fitness costs such as reduced fecundity or reduced survival are less costly in spatially structured environments than in nonspatial settings. I first present a simple demographic example to illustrate how spatial structure weakens selection against fitness costs. Then, I illustrate the importance of disentangling the evolution of a trait from the evolution of potential associated costs, using an example taken from a recent study investigating the effect of spatial structure on the evolution of host defense. In this example indeed, the differences between spatial and nonspatial selection gradients are due to differences in the fitness costs, thereby undermining interpretations of the results made in terms of the trait only. This illustrates the need to consider fitness costs as proper traits in both theoretical and empirical studies.  相似文献   

7.
Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life‐history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco‐evolutionary theory and models have not yet fully encompassed within‐individual and among‐individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life‐history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal‐tracking technologies are increasingly demonstrating substantial within‐population variation in the occurrence and form of migration versus year‐round residence, generating diverse forms of ‘partial migration’ spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year‐round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio‐temporal population dynamics, we define a ‘partially migratory meta‐population’ system as a spatially structured set of locations that can be occupied by different sets of resident and migrant individuals in different seasons, and where locations that can support reproduction can also be linked by dispersal. We outline key forms of within‐individual and among‐individual variation and structure in migration that could arise within such systems and interact with variation in individual survival, reproduction and dispersal to create complex population dynamics and evolutionary responses across locations, seasons, years and generations. Third, we review approaches by which population dynamic and eco‐evolutionary models could be developed to test hypotheses regarding the dynamics and persistence of partially migratory meta‐populations given diverse forms of seasonal environmental variation and change, and to forecast system‐specific dynamics. To demonstrate one such approach, we use an evolutionary individual‐based model to illustrate that multiple forms of partial migration can readily co‐exist in a simple spatially structured landscape. Finally, we summarise recent empirical studies that demonstrate key components of demographic structure in partial migration, and demonstrate diverse associations with reproduction and survival. We thereby identify key theoretical and empirical knowledge gaps that remain, and consider multiple complementary approaches by which these gaps can be filled in order to elucidate population dynamic and eco‐evolutionary responses to spatio‐temporal seasonal environmental variation and change.  相似文献   

8.
Summary Natural populations live in heterogeneous environments, where habitat variation drives the evolution of phenotypic plasticity. The key feature of population structure addressed in this paper is the net flow of individuals from source (good) to sink (poor) habitats. These movements make it necessary to calculate fitness across the full range of habitats encountered by the population, rather than independently for each habitat. As a consequence, the optimal phenotype in a given habitat not only depends on conditions there but is linked to the performance of individuals in other habitats. We generalize the Euler-Lotka equation to define fitness in a spatially heterogeneous environment in which individuals disperse among habitats as newborn and then stay in a given habitat for life. In this case, maximizing fitness (the rate of increase over all habitats) is equivalent to maximizing the reproductive value of newborn in each habitat but not to maximizing the rate of increase that would result if individuals in each habitat were an isolated population. The new equation can be used to find optimal reaction norms for life history traits, and examples are calculated for age at maturity and clutch size. In contrast to previous results, the optimal reaction norm differs from the line connecting local adaptations of isolated populations each living in only one habitat. Selection pressure is higher in good and frequent habitats than in poor and rare ones. A formula for the relative importance of these two factors allows predictions of the habitat in which the genetic variance about the optimal reaction norm should be smallest.  相似文献   

9.
Simple mathematical models are used to investigate the coexistence of two consumers using a single limiting resource that is distributed over distinct patches, and that has unequal growth rates in the different patches. Relatively low movement rates or high demographic rates of an inefficient resource exploiter allow it to coexist at a stable equilibrium with a more efficient species whose ratio of movement to demographic rates is lower. The range of conditions allowing coexistence depends on the between‐patch heterogeneity in resource growth rates, but this range can be quite broad. The between‐patch movement of the more efficient consumer turns patches with high resource growth rates into sources, while low‐growth‐rate patches effectively become sinks. A less efficient species can coexist with or even exclude the more efficient species from the global environment if it is better able to bias its spatial distribution towards the source patches. This can be accomplished with density independent dispersal if the less efficient species has a lower ratio of per capita between‐patch movement rate to demographic rates. Conditions that maximize the range of efficiencies allowing coexistence of two species are: a relatively high level of heterogeneity in resource growth conditions; high dispersal (or low demographic rates) of the superior competitor; and low dispersal (or high demographic rates) of the inferior competitor. Global exclusion of the more efficient competitor requires that the inferior competitor have sufficient movement to also produce a source‐sink environment.  相似文献   

10.
Although there has been growing interest in the effect of dispersal on species diversity, much remains unknown about how dispersal occurring at multiple scales influences diversity. We used an experimental microbial landscape to determine whether dispersal occurring at two different scales - among local communities and among metacommunities - affects diversity differently. At the local scale, dispersal initially had a positive effect and subsequently a neutral effect on diversity, whereas at the metacommunity and landscape scales, dispersal showed a consistently negative effect. The timing in which dispersal affected beta diversity also differed sharply between local communities and metacommunities. These patterns were explained by scale- and time-dependent effects of dispersal in allowing spread of species and in removing spatial refuges from predators. Our results suggest that the relative contribution of opposing mechanisms by which dispersal affects diversity changes considerably over time and space in hierarchical landscapes in which dispersal occurs at multiple scales.  相似文献   

11.
We modelled the population dynamics of two types of plants with limited dispersal living in a lattice structured habitat. Each site of the square lattice model was either occupied by an individual or vacant. Each individual reproduced to its neighbors. We derived a criterion for the invasion of a rare type into a population composed of a resident type based on a pair-approximation method, in which the dynamics of both average densities and the nearest neighbor correlations were considered. Based on this invasibility criterion, we showed that, when there is a tradeoff between birth and death rates, the evolutionarily stable type is the one that has the highest ratio of birth rate to mortality. If these types are different species, they form segregated spatial patterns in the lattice model in which intraspecific competitive interactions occur more frequently than interspecific interactions. However, stable coexistence is not possible in the lattice model contrary to results from completely mixed population models. This clearly shows that the casual conclusion, based on traditional well mixed population models, that different species can coexist if intraspecific competition is stronger than interspecific competition, does not hold for spatially structured population models.  相似文献   

12.
13.
14.
Spatial structure is thought to be an important factor influencing the emergence and maintenance of genetic diversity. Previous studies have demonstrated that environmental heterogeneity, provided by spatial structure, leads to adaptive radiation of populations. In the present study, we investigate not only the impact of environmental heterogeneity on adaptive radiation, but also of population fragmentation and niche construction. Replicate populations founded by a single genotype of Escherichia coli were allowed to evolve for 900 generations by serial transfer in either a homogeneous environment, or a spatially structured environment that was either kept intact or destroyed with each daily transfer. Only populations evolving in the structured environment with intact population structure diversified: clones are significantly divergent in sugar catabolism, and show frequency-dependent fitness interactions indicative of stable coexistence. These findings demonstrate an important role for population fragmentation, a consequence of population structure in spatially structured environments, on the diversification of populations.  相似文献   

15.
Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca . Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca , selects for higher castration virulence in Allomerus , because seeds from Azteca -inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.  相似文献   

16.
Species coexistence may result by chance when co‐occurring species do not strongly interact or it may be an evolutionary outcome of strongly interacting species adapting to each other. Although patterns like character displacement indicate that coexistence has often been an evolutionary outcome, it is unclear how often the evolution of coexistence represents adaptation in only one species or reciprocal adaptation among all interacting species. Here, we demonstrate a strong role for evolution in the coexistence of guppies and killifish in Trinidadian streams. We experimentally recreated the temporal stages in the invasion and establishment of guppies into communities that previously contained only killifish. We combined demographic responses of guppies and killifish with a size‐based integral projection model to calculate the fitness of the phenotypes of each species in each of the stages of community assembly. We show that guppies from locally adapted populations that are sympatric with killifish have higher fitness when paired with killifish than guppies from allopatric populations. This elevated fitness involves effects traceable to both guppy and killifish evolution. We discuss the implications of our results to the study of species coexistence and how it may be mediated through eco‐evolutionary feedbacks.  相似文献   

17.
Aim Tropical savanna ecosystems are uniquely characterized by the co‐dominance of both trees and grasses. An operational understanding of the ecological processes involved in maintaining this condition is essential for understanding both the functioning of savanna systems as well as their potential response to environmental change. A simple model is presented to explore the potential for a demographic mechanism of long‐term tree persistence and temporal physiognomic stability in the Brazilian cerrado. Location The model is developed based on data from the humid cerrado of Brazil. Methods In contrast to many existing models of tree–grass dynamics a model is presented which is based on data from the humid cerrado of Brazil, which is both qualitatively and quantitatively different from many of the more arid savannas of the palaeotropics. The model focuses on the dynamics of a synthetic tree population, with particular attention given to reproduction, seedling establishment and fire effects; with separate sub‐models for grass production, fire and rainfall. Results The model successfully predicts coexistence across the full range of observed vegetation physiognomies, but only under limited conditions. Under coexistence conditions, the dynamics of the tree population are characterized by long periods of gradual decline, punctuated by occasional bursts of growth. However, in agreement with earlier studies, the model consistently over‐predicts domination by the tree component. Fire is identified as an overriding factor in determining model behaviour, and the response of reproduction and sapling recruitment to variance in the frequency of fire ignition is identified to be of potential importance in the functioning of the Brazilian cerrado. The key dynamics of the model which promote tree–grass coexistence are consistent with a number of established determinants of ecological resilience in savanna systems. Main conclusions The model identifies the importance of the effective exploitation of rare opportunities for favourable recruitment (e.g. exclusion from fire) by the tree population, in promoting coexistence within a predominantly adverse environment. Support is provided for an alternative demographic mechanism of tree–grass coexistence in the cerrado (the storage effect), which is not based on the limiting assumption of niche partitioning through differences in rooting depth. The results are consistent with those presented by recent modelling work based on the more arid savannas of southern Africa. The model presented here differs in the emphasis given to particular environmental and life‐history attributes which are critical in determining the tree–grass balance, but provides further general support for the potential role of demographic mechanisms (such as the storage effect) in determining the structure of tropical savannas. Despite having clear limitations, models can serve as valuable heuristic tools to aid the integration and exploration of existing data sets as well as our present understanding of key ecological processes.  相似文献   

18.
19.
Ecological factors influencing the effects of antibiotic production were explored experimentally and theoretically. A spatially structured model was used to model the dynamics of antibiotic-producing and nonproducing bacteria in which growth of the nonproducers was reduced by neighbouring antibiotic producers. Various factors affecting spatial interactions between the bacteria were examined for their impact on antibiotic producers. Spatial clustering had a positive impact on the effect of antibiotic production, as measured by the decline in growth of the nonproducing strain, while increasing the initial density of the nonproducing strain had a negative impact. Experiments examined the growth of antibiotic-producing Streptomyces species and a nonproducing, antibiotic-sensitive strain of Bacillus subtilis that were coinoculated on surface media. There was an effect of the Streptomyces on Bacillus growth in some experiments but not in others. In light of the predictions from the model, unintentional clustering of cells is a more likely explanation for this finding than different initial Bacillus densities. The importance of spatial structure seen in this study is consistent with a terrestrial rather than an aquatic distribution of antibiotic-producing bacteria, and may have implications in the search for novel antibiotics.  相似文献   

20.
In a previous study, a model of landscape heterogeneity was developed and applied to a spatially structured wild rabbit (Oryctolagus cuniculus) population. That study showed clearly the influence of resource heterogeneity on connectivity levels. The simulation study was based on female movements and used population genetic validation data appropriate for a female study. Most models assume that males and females will exhibit similar patterns, although this has rarely been tested. In the current study we extend the analysis to consider differences between female and male connectivity in the same spatially structured pest system. Amplified fragment length polymorphism (AFLP) markers were screened on the same samples used previously for mtDNA analysis. The mtDNA data were used to validate female results, and AFLP data were used to validate combined male and female results. Connectivity patterns from the two simulations (female, and combined male and female) connectivity patterns showed no association. However, each was concordant with appropriate validation data, showing highly significant associations between pairwise population connectivity and the genetic data. A relative connectivity metric for the combined simulation was regressed against the mean of pairwise ΦST values, with almost 70% of the variation explained by a linear model. Demonstrating differential effects of habitat heterogeneity on male and female connectivity provides further evidence that spatial resource heterogeneity impacts on connectivity. Understanding differences in population connectivity will allow improved predictions of disease spread, local extinctions and recolonizations. Furthermore, modelling such differences in pest systems will allow management plans to be better targeted, for example by strategically introducing diseases for control purposes into populations which exhibit high male connectivity to aid spread, but low female connectivity to inhibit recolonization potential after control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号