首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two homologous Delta5-3-ketosteroid isomerases from Comamonas testosteroni (TI-WT) and Pseudomonas putida biotype B (PI-WT) exhibit different pH activity profiles. TI-WT loses activity below pH 5.0 due to the protonation of the conserved catalytic base, Asp-38, while PI-WT does not. Based on the structural analysis of PI-WT, the critical catalytic base, Asp-38, was found to form a hydrogen bond with the indole ring NH of Trp-116, which is homologously replaced with Phe-116 in TI-WT. To investigate the role of Trp-116, we prepared the F116W mutant of TI-WT (TI-F116W) and the W116F mutant of PI-WT (PI-W116F) and compared kinetic parameters of those mutants at different pH levels. PI-W116F exhibited significantly decreased catalytic activity at acidic pH like TI-WT, whereas TI-F116W maintained catalytic activity at acidic pH like PI-WT and increased the kcat/Km value by 2.5- to 4.7-fold compared with TI-WT at pH 3.8. The crystal structure of TI-F116W clearly showed that the indole ring NH of Trp-116 could form a hydrogen bond with the carboxyl oxygen of Asp-38 like that of PI-WT. The present results demonstrate that the activities of both PI-WT and TI-F116W at low pH were maintained by a tryptophan, which was able not only to lower the pKa value of the catalytic base but also to increase the substrate affinity. This is one example of the strategy nature can adopt to evolve the diversity of the catalytic function in the enzymes. Our results provide insight into deciphering the molecular evolution of the enzyme and creating novel enzymes by protein engineering.  相似文献   

2.
A Kuliopulos  P Talalay  A S Mildvan 《Biochemistry》1990,29(44):10271-10280
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by a conservative tautomeric transfer of the 4 beta-proton to the 6 beta-position with Tyr-14 as a general acid and Asp-38 as a general base [Kuliopulos, A., Mildvan, A. S., Shortle, D., & Talalay, P. (1989) Biochemistry 28, 149-159]. Primary, secondary, and combined deuterium kinetic isotope effects establish concerted substrate enolization to be the rate-limiting step with the wild-type enzyme [Xue, L., Talalay, P., & Mildvan, A. S. (1990) Biochemistry 29, 7491-7500]. The product of the fractional kcat values resulting from the Y14F mutation (10(-4.7)) and the D38N mutation (10(-5.6)) is comparable (10(-10.3)) to that of the double mutant Y14F + D38N (less than or equal to 10(-10.4)) which is completely inactive. Hence, the combined effects are either additive or synergistic. Quantitatively, similar effects of the two mutations on kcat/KM are found in the double mutant. Despite its inactivity, the Y14F + D38N double mutant forms crystals indistinguishable in form from those of the wild-type enzyme, tightly binds steroid substrates and substrate analogues, and immobilizes a spin-labeled steroid in an orientation indistinguishable from that found in the wild-type enzyme, indicating that the double mutant is otherwise largely intact. It is concluded that the total enzymatic activity of ketosteroid isomerase probably results from the independent and concerted functioning of Tyr-14 and Asp-38 in the rate-limiting enolization step, in accord with the perpendicular or antarafacial orientation of these two residues with respect to the enzyme-bound substrate. Synergistic effects of mutating two residues on kcat and on kcat/KM of enzyme-catalyzed multistep reactions are shown, theoretically, to occur when both residues act independently in the same step, and simple additivity occurs when this step is rate-limiting. Other conditions for additivity of the effects of mutations of kcat and kcat/KM are theoretically explored.  相似文献   

3.
Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.  相似文献   

4.
Feierberg I  Aqvist J 《Biochemistry》2002,41(52):15728-15735
Ketosteroid isomerase (KSI) catalyzes the isomerization of Delta(5)-3-ketosteroids and Delta(4)-3-ketosteroids at very high rates. Here we examine the principles underlying the catalytic efficiency of KSI by computer simulations using the empirical valence bond method in combination with molecular dynamics free energy perturbation simulations. The simulations reproduce available kinetic and structural data very well and allow us to examine several features of the catalytic mechanism in detail. It is found that about 60% of the rate enhancement is due to stabilization of the negatively charged dienolate intermediate by hydrogen bonding. The critical H-bond between Tyr16 and the intermediate is found to be a normal ionic H-bond with the preferred proton location on the tyrosine residue. The remaining 40% of the catalytic effect originates from a reduction of the reorganization energy of the reaction. The possibility of an active site water molecule occupying the empty cavity adjacent to the catalytic base (Asp40) is also addressed. The existence of such a water molecule could explain how the enzyme manages to maintain a low pK(a) for the general base residue.  相似文献   

5.
The article reviews recent developments in the study of the reaction mechanisms of non-heme iron-dependent dioxygenase enzymes, especially the catechol dioxygenases and arene (Rieske) dioxygenases.  相似文献   

6.
Breaking a carbon-hydrogen bond adjacent to a carbonyl is a slow step in a large number of chemical reactions. However, many enzymes are capable of catalyzing this reaction with great efficiency. One of the most proficient of these enzymes is 3-oxo-Delta5-steroid isomerase (KSI), which catalyzes the isomerization of a wide variety of 3-oxo-Delta5-steroids to their Delta4-conjugated isomers. In this review, the mechanism of KSI is discussed, with particular emphasis on energetic considerations. Both experimental and theoretical approaches are considered to explain the mechanistic details of the reaction.  相似文献   

7.
Proper protein anchoring is key to the biogenesis of prokaryotic cell surfaces, dynamic, resilient structures that play crucial roles in various cell processes. A novel surface protein anchoring mechanism in Haloferax volcanii depends upon the peptidase archaeosortase A (ArtA) processing C‐termini of substrates containing C‐terminal tripartite structures and anchoring mature substrates to the cell membrane via intercalation of lipid‐modified C‐terminal amino acid residues. While this membrane protein lacks clear homology to soluble sortase transpeptidases of Gram‐positive bacteria, which also process C‐termini of substrates whose C‐terminal tripartite structures resemble those of ArtA substrates, archaeosortases do contain conserved cysteine, arginine and arginine/histidine/asparagine residues, reminiscent of His‐Cys‐Arg residues of sortase catalytic sites. The study presented here shows that ArtAWT‐GFP expressed in trans complements ΔartA growth and motility phenotypes, while alanine substitution mutants, Cys173 (C173A), Arg214 (R214A) or Arg253 (R253A), and the serine substitution mutant for Cys173 (C173S), fail to complement these phenotypes. Consistent with sortase active site replacement mutants, ArtAC173A‐GFP, ArtAC173S‐GFP and ArtAR214A‐GFP cannot process substrates, while replacement of the third residue, ArtAR253A‐GFP retains some processing activity. These findings support the view that similarities between certain aspects of the structures and functions of the sortases and archaeosortases are the result of convergent evolution.  相似文献   

8.
The enzymatic and coupled d-xylose isomerase/d-sorbitol dehydrogenase assay is a rapid and specific method, permitting accurate quantification of d-xylose isomerization and of d-xylose. The method is based on the isomerization of d-xylose to d-xylulose, followed by reduction of the latter to xylitol by commercially available d-sorbitol dehydrogenase and NADH. The application of this one-step method cannot be extended to d-glucose isomerization since the conditions for a valid coupled assay are not fulfilled. For quantification of d-glucose isomerization, the two-step procedure with d-sorbitol dehydrogenase is recommended. Kinetic parameters for d-xylose and d-glucose using d-xylose isomerase from Streptomyces violaceoruber are reported. The results are compared with the widely used colorimetric cysteine-carbazole method.  相似文献   

9.
10.
11.
同源交叉反应发生的分子机制   总被引:1,自引:0,他引:1  
具有一定同源性的蛋白之间可能存在交叉反应而使过敏现象的发生变得更为复杂。与一般的过敏反应类似,交叉反应主要通过B细胞、T细胞、肥大细胞3种途径诱导产生。而不同途径介导产生的交叉反应表现出同一抗原不同的结构特征。通过比较交叉反应在B细胞、T细胞、肥大细胞3种水平产生的不同分子机制,阐明了交叉反应发生的分子基础,为临床抗过敏疾病的治疗提供理论依据。  相似文献   

12.
Manithody C  Yang L  Rezaie AR 《Biochemistry》2002,41(21):6780-6788
The autolysis loop of factor Xa (fXa) has four basic residues (Arg(143), Lys(147), Arg(150), and Arg(154)) whose contribution to protease specificity of fXa has not been examined. Here, we substituted these basic residues individually with Ala in the fX cDNA and expressed them in mammalian cells using a novel expression/purification vector system. Following purification to homogeneity and activation by the factor X activator from Russell viper venom, the mutants were characterized with respect to their ability to assemble into the prothrombinase complex to activate prothrombin and interact with target plasma fXa inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin. We show that all mutants interacted with factor Va with normal affinities and exhibited wild-type-like prothrombinase activities toward prothrombin. Lys(147) and Arg(154) mutants were inhibited by TFPI approximately 2-fold slower than wild type; however, both Arg(143) and Arg(150) mutants were inhibited normally by the inhibitor. The reactivities of Arg(143) and Lys(147) mutants were improved approximately 2-fold with antithrombin in the absence but not in the presence of heparin cofactors. On the other hand, the pentasaccharide-catalyzed reactivity of antithrombin with the Arg(150) mutant was impaired by an order of magnitude. These results suggest that Arg(150) of the autolysis loop may specifically interact with the activated conformation of antithrombin.  相似文献   

13.
CI Andreu  U Woehlbier  M Torres  C Hetz 《FEBS letters》2012,586(18):2826-2834
Protein disulfide isomerases (PDIs) are a family of foldases and chaperones primarily located at the endoplasmic reticulum that catalyze the formation and isomerization of disulfide bonds thereby facilitating protein folding. PDIs also perform important physiological functions in protein quality control, cell death, and cell signaling. Protein misfolding is involved in the etiology of the most common neurodegenerative diseases, including Alzheimer, Parkinson, amyotrophic lateral sclerosis, Prion-related disorders, among others. Accumulating evidence indicate altered expression of PDIs as a prominent and common feature of these neurodegenerative conditions. Here we overview most recent advances in our understanding of the possible functional contribution of PDIs to neurodegeneration, depicting a complex and poorly understood scenario. Possible therapeutic benefits of targeting PDIs in a disease context and their use as biomarkers are discussed.  相似文献   

14.
The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: (1) optimizing the classifier to maximize a performance criterion that considers both Type I and Type II errors in the classification of catalytic and non-catalytic residues; (2) under-sampling non-catalytic residues before SVM training; and (3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets, one specifically designed by us to mimic the structural genomics scenario and three previously evaluated datasets, our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to the evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/~meshi/functionPrediction.  相似文献   

15.
We have used continuum electrostatic methods to investigate the role of electrostatic interactions in the structure, function, and pH-dependent stability of the fungal Rhizomucor miehei lipase (RmL) family. We identify a functionally important electrostatic network which includes residues S144, D203, H257, Y260, H143, Y28, R80, and D91 (residue numbering is from RmL). This network consists of residues belonging to the catalytic triad (S144, D203, H257), residues located in proximity to the active site (Y260), residues stabilizing the geometry of the active site (Y28, H143), and residues located in the lid (D91) or close to the first hinge (R80). The lid and the first hinge are associated with the interfacial activation of lipases, where an alpha-helical lid opens up by rotating around two hinge regions. All network residues are well conserved in a set of 12 lipase homologues, and 6 of the network residues are located in sequence motifs. We observe that the effects of modeled mutations R86L, D91N, and H257F on the pH-dependent electrostatic free energies differ significantly in the closed and open conformations of RmL. Mutation R86L is especially interesting since it stabilizes the closed conformation but destabilizes the open one. Site-site electrostatic interaction energies reveal that interactions between R86 and D61, D113, and E117 stabilize the open conformation.  相似文献   

16.
Mitochondrial complex I exists as a mixture of two inter-convertible forms: active (A) and de-activated (D), the latter being sensitive to SH-modifying compounds. To investigate if the conserved cysteine-rich 11.5 kDa subunit of Neurospora crassa complex I is involved in this process, we subjected the corresponding genomic DNA to site-directed mutagenesis. The four cysteine residues of the subunit were separately substituted with serine residues and the resulting proteins were independently expressed in a null-mutant strain. All of the obtained mutant strains were able to assemble a complex I with similar kinetic properties to those observed in the wild-type enzyme, indicating that none of the cysteine residues of the 11.5 kDa protein is individually relevant for the A/D transition process. Diminished amounts of assembled complex I seem to be the major effect of these specific mutations. The cysteine residues are likely important to the acquisition and stabilization of the correct 11.5 kDa protein conformation and this is reflected in the assembly/stability of complex I.  相似文献   

17.
The pK(a) values of the CXXC active-site cysteine residues play a critical role in determining the physiological function of the thioredoxin superfamily. To act as an efficient thiol-disulphide oxidant the thiolate state of the N-terminal cysteine must be stabilised and the thiolate state of the C-terminal cysteine residue destabilised. While increasing the pK(a) value of the C-terminal cysteine residue promotes oxidation of substrates, it has an inhibitory effect on the reoxidation of the enzyme, which is promoted by the formation of a thiolate at this position. Since reoxidation is essential to complete the catalytic cycle, the differential requirement for a high and a low pK(a) value for the C-terminal cysteine residue for different steps in the reaction presents us with a paradox. Here, we report the identification of a conserved arginine residue, located in the loop between beta5 and alpha4 of the catalytic domains of the human protein disulphide isomerase (PDI) family, which is critical for the catalytic function of PDI, ERp57, ERp72 and P5, specifically for reoxidation. An examination of the published NMR structure for the a domain of PDI combined with molecular dynamic studies suggest that the side-chain of this arginine residue moves into and out of the active-site locale and that this has a very marked effect on the pK(a) value of the active-site cysteine residues. This intra-domain motion resolves the apparent dichotomy of the pK(a) requirements for the C-terminal active-site cysteine.  相似文献   

18.
Rat intestinal fatty acid binding protein (IFABP) displays an intermediate with little if any secondary structure during unfolding, while the structurally homologous rat ileal lipid binding protein (ILBP) displays an intermediate during unfolding with nativelike secondary structure. Double-jump experiments indicate that these intermediates are on the folding path for each protein. To test the hypothesis that differences in the number of buried hydrophobic atoms in a folding initiating site are responsible for the different types of intermediates observed for these proteins, two mutations (F68C-IFABP and C69F-ILBP) were made that swapped a more hydrophobic residue for a more hydrophilic residue in the respective cores of these two proteins. F68C-IFABP followed an unfolding path identical to that of WT-ILBP with an intermediate that showed nativelike secondary structure, whereas C69F-ILBP followed an unfolding path that was identical to that of WT-IFABP with an intermediate that lacked secondary structure. Further, a hydrophilic residue was introduced at an identical hydrophobic structural position in both proteins (F93S-IFABP and F94S-ILBP). Replacement of phenylalanine with serine at this site led to the appearance of an intermediate during refolding that lacked secondary structure for both proteins that was not detected for either parental protein. Altering the chemical characteristics and/or size of residues within an initiating core of hydrophobic interactions is critical to the types of intermediates that are observed during the folding of these proteins.  相似文献   

19.
The class III histone deacetylase (HDAC) SIRT1 plays a role in the metabolism, aging, and carcinogenesis of organisms and regulates senescence and apoptosis in cells. Recent reports revealed that SIRT1 also deacetylates several DNA double-strand break (DSB) repair proteins. However, its exact functions in DNA repair remained elusive. Using nuclear foci analysis and fluorescence-based, chromosomal DSB repair reporter, we find that SIRT1 activity promotes homologous recombination (HR) in human cells. Importantly, this effect is unrelated to functions of poly(ADP-ribose) polymerase 1 (PARP1), another NAD(+)-catabolic protein, and does not correlate with cell cycle changes or apoptosis. Interestingly, we demonstrate that inactivation of Rad51 does not eliminate the effect of SIRT1 on HR. By epistasis-like analysis through knockdown and use of mutant cells of distinct SIRT1 target proteins, we show that the non-homologous end joining (NHEJ) factor Ku70 as well as the Nijmegen Breakage Syndrome protein (nibrin) are not needed for this SIRT1-mediated effect, even though a partial contribution of nibrin cannot be excluded. Strikingly however, the Werner helicase (WRN), which in its mutated form causes premature aging and cancer and which was linked to the Rad51-independent single-strand annealing (SSA) DSB repair pathway, is required for SIRT1-mediated HR. These results provide first evidence that links SIRT1's functions to HR with possible implications for genomic stability during aging and tumorigenesis.  相似文献   

20.
MOTIVATION: Prediction of catalytic residues provides useful information for the research on function of enzymes. Most of the existing prediction methods are based on structural information, which limits their use. We propose a sequence-based catalytic residue predictor that provides predictions with quality comparable to modern structure-based methods and that exceeds quality of state-of-the-art sequence-based methods. RESULTS: Our method (CRpred) uses sequence-based features and the sequence-derived PSI-BLAST profile. We used feature selection to reduce the dimensionality of the input (and explain the input) to support vector machine (SVM) classifier that provides predictions. Tests on eight datasets and side-by-side comparison with six modern structure- and sequence-based predictors show that CRpred provides predictions with quality comparable to current structure-based methods and better than sequence-based methods. The proposed method obtains 15-19% precision and 48-58% TP (true positive) rate, depending on the dataset used. CRpred also provides confidence values that allow selecting a subset of predictions with higher precision. The improved quality is due to newly designed features and careful parameterization of the SVM. The features incorporate amino acids characterized by the highest and the lowest propensities to constitute catalytic residues, Gly that provides flexibility for catalytic sites and sequence motifs characteristic to certain catalytic reactions. Our features indicate that catalytic residues are on average more conserved when compared with the general population of residues and that highly conserved amino acids characterized by high catalytic propensity are likely to form catalytic sites. We also show that local (with respect to the sequence) hydrophobicity contributes towards the prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号