首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stem cells in the nervous system have some capacity to restore damaged tissue. Proliferation of stem cells endows them with self-renewal ability and accounts for in vitro formation of neurospheres, clonally derived colonies of floating cells. However, damage to the nervous system is not readily repaired, suggesting that the stem cells do not provide an easily recruited source of cells for regeneration. The vestibular and auditory organs, despite their limited ability to replace damaged cells, appear to contain cells with stem cell properties. These inner ear stem cells, identified by neurosphere formation and by their expression of markers of inner ear progenitors, can differentiate to hair cells and neurons. Differentiated cells obtained from inner ear stem cells expressed sensory neuron markers and, after co-culture with the organ of Corti, grew processes that extended to hair cells. The neurons expressed synaptic vesicle markers at points of contact with hair cells. Exogenous stem cells have also been used for hair cell and neuron replacement. Embryonic stem cells are one potential source of both hair cells and sensory neurons. Neural progenitors made from embryonic stem cells, transplanted into the inner ear of gerbils that had been de-afferented by treatment with a toxin, differentiated into cells that expressed neuronal markers and grew processes both peripherally into the organ of Corti and centrally. The regrowth of these neurons suggests that it may be possible to replace auditory neurons that have degenerated with neurons that restore auditory function by regenerating connections to hair cells.  相似文献   

3.
The mouse mutant Snell's waltzer (sv) has an intragenic deletion of the Myo6 gene, which encodes the unconventional myosin molecule myosin VI (K. B. Avraham et al., 1995, Nat. Genet. 11, 369-375). Snell's waltzer mutants exhibit behavioural abnormalities suggestive of an inner ear defect, including lack of responsiveness to sound, hyperactivity, head tossing, and circling. We have investigated the effects of a lack of myosin VI on the development of the sensory hair cells of the cochlea in these mutants. In normal mice, the hair cells sprout microvilli on their upper surface, and some of these grow to form a crescent or V-shaped array of modified microvilli, the stereocilia. In the mutants, early stages of stereocilia development appear to proceed normally because at birth many stereocilia bundles have a normal appearance, but in places there are signs of disorganisation of the bundles. Over the next few days, the stereocilia become progressively more disorganised and fuse together. Practically all hair cells show fused stereocilia by 3 days after birth, and there is extensive stereocilia fusion by 7 days. By 20 days, giant stereocilia are observed on top of the hair cells. At 1 and 3 days after birth, hair cells of mutants and controls take up the membrane dye FM1-43, suggesting that endocytosis occurs in mutant hair cells. One possible model for the fusion is that myosin VI may be involved in anchoring the apical hair cell membrane to the underlying actin-rich cuticular plate, and in the absence of normal myosin VI this apical membrane will tend to pull up between stereocilia, leading to fusion.  相似文献   

4.
5.
Beginning in 8-day embryos, stereocilia sprout from the apical surface of hair cells apparently at random. As the embryo continues to develop, the number of stereocilia increases. By 10 1/2 days the number is approximately the same as that encountered extending from mature hair cells at the same relative positions in the adult cochlea. Surprisingly, over the next 2-3 days the number of stereocilia continues to increase so that hair cells in a 12-day embryo have 1 1/2 to 2 times as many stereocilia as in adult hair cells. In short, there is an overshoot in stereociliary number. During the same period in which stereocilia are formed (9-12 days) the apical surface of each hair cell is filled with closely packed stereocilia; thus the surface area is proportional to the number of stereocilia present per hair cell, as if these features were coupled. The staircase begins to form in a 10-day embryo, with what will be the tallest row beginning to elongate first and gradually row after row begins to elongate by incorporation of stereocilia at the foot of the staircase. Extracellular connections or tip linkages appear as the stereocilia become incorporated into the staircase. After a diminutive staircase has formed, eg. in a 12-day embryo, the remaining stereocilia located at the foot of the staircase begin to be reabsorbed, a process that occurs during the next few days. We conclude that the hair cell determines the number of stereocilia to form by filling up the available apical surface area with stereocilia and then, by cropping back those that are not stabilized by extracellular linkages, arrives at the appropriate number. Furthermore, the stereociliary pattern, which changes from having a round cross-sectional profile to a rectangular one, is generated by these same linkages which lock the stereocilia into a precise pattern. As this pattern is established, we envision that the stereocilia flow over the apical surface until frozen in place by the formation of the cuticular plate in the apical cell cytoplasm.  相似文献   

6.
The cochleae of chick embryos of 8 days of incubation until hatching (21 days) were examined by scanning electron microscopy. Unlike what one would expect from the literature, the total number of hair cells per cochlea (10,405 +/- 529) is already determined and visible in a 10-day embryo and the growth of the cochlea is a result of the growth in size and surface area of the hair cells. We also find that the hair cells differentiate simultaneously throughout the cochlea and have followed the differentiation of individual hair cells throughout development. During development we find that the total number, hexagonal packing, and orientation of the stereocilia in each hair cell is determined early and accurately (9- to 10-day embryos). The stereocilia then begin to elongate in all the cells of the cochlea at approximately 0.5 micron/day. By Day 12 the tallest stereocilia in each cell are 1.5-1.8 micron long, the mature length for cells at the proximal end of the cochlea. At this point all stereocilia cease elongating, but those along the inferior edge gradually increase in width from 0.11 micron to maximally 0.19 micron in 17-day embryos. When the stereocilia on the inferior edge reach their mature width, widening ceases and the elongation of stereocilia in the distal hair cells begins again. When these stereocilia have attained their mature lengths, they stop growing. Thus elongation and widening of stereocilia are separated in time. During this period, 11 to 13 days, the shape of the tufts at the proximal end of the cochlea changes. This occurs because stereocilia in the front of each tuft are absorbed while others at the sides appear de novo. This rearrangement converts a circular bundle of stereocilia to a rectangular bundle.  相似文献   

7.
8.
High frequency force generation in outer hair cells from the mammalian ear   总被引:1,自引:0,他引:1  
Mammalian outer hair cells generate mechanical forces at acoustic frequencies and can thus amplify the sound stimulus within the inner ear. The mechanism of force generation depends upon the plasma membrane potential but not upon either calcium or ATP. Forces are generated in the lateral cortex along the full length of the cell. The cortex includes a two-dimensional cytoskeletal lattice composed of circumferential filaments 6-7 nm thick that are cross-linked by filaments 3-4 nm thick and 40-60 nm long. The two filament types may, respectively, be actin and some form of spectrin. The lattice reinforces the cylindrical shape of the cell and permits limited changes in length. Beneath it lie the lateral cisternae, a regular system of multi-layered membranes. Force-generation may depend upon voltage-dependent shape changes in proteins that lie either in the plasma membrane or in the cytoskeletal lattice.  相似文献   

9.
Ptprq is a receptor‐like inositol lipid phosphatase associated with the shaft connectors of hair bundles. Three lines of evidence suggest Ptprq is a chondroitin sulfate proteoglycan: (1) chondroitinase ABC treatment causes a loss of the ruthenium‐red reactive, electron‐dense particles associated with shaft connectors, (2) chondroitinase ABC causes an increase in the electrophoretic mobility of Ptprq, and (3) hair bundles in the developing inner ear of wild‐type mice, but not those of Ptprq?/? mice, react with monoclonal antibody (mAb) 473‐HD, an IgM that recognizes the dermatan‐sulfate‐dependent epitope DSD1. Two lines of evidence indicate that there may be multiple isoforms of Ptprq expressed in hair bundles. First, although Ptprq is expressed throughout the lifetime of most hair cells, hair bundles in the mouse and chick inner ear only express the DSD1 epitope transiently during development. Second, mAb H10, a novel mAb that recognizes an epitope common to several avian inner‐ear proteins including Ptprq, only stains mature hair bundles in the extrastriolar regions of the vestibular maculae. MAb H10 does not stain mature hair bundles in the striolar regions of the maculae or in the basilar papilla, nor does it stain immature hair bundles in any organ. Three distinct, developmentally regulated isoforms of Ptprq may therefore be expressed on hair bundles of the chick inner ear. Hair bundles in the mature chick ear that do not express the H10 epitope have longer shaft connectors than those that do, indicating the presence or absence of the H10 epitope on Ptprq may modulate the spacing of stereocilia. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 129‐141, 2011  相似文献   

10.
The auditory-vestibular ganglion (AVG) is formed by the division of otic placode-derived neuroblasts, which then differentiate into auditory and vestibular afferent neurons. The developmental mechanisms that regulate neuronal cell fate determination, axonal pathfinding and innervation of otic neurons are poorly understood. The present study characterized the expression of myosin VIIA, along with the neuronal markers, Islet1, NeuroD1 and TuJ1, in the developing avian ear, during Hamburger–Hamilton (HH) stages 16–40. At early stages, when neuroblasts are delaminating from the otic epithelium, myosin VIIA expression was not observed. Myosin VIIA was initially detected in a subset of neurons during the early phase of neuronal differentiation (HH stage 20). As the AVG segregates into the auditory and vestibular portions, myosin VIIA was restricted to a subset of vestibular neurons, but was not present in auditory neurons. Myosin VIIA expression in the vestibular ganglion was maintained through HH stage 33 and was downregulated by stage 36. Myosin VIIA was also observed in the migrating processes of vestibular afferents as they begin to innervate the otic epithelium HH stage 22/23. Notably, afferents targeting hair cells of the cristae were positive for myosin VIIA while afferents targeting the utricular and saccular maculae were negative (HH stage 26–28). Although previous studies have reported that myosin VIIA is restricted to sensory hair cells, our data shows that myosin VIIA is also expressed in neurons of the developing chick ear. Our study suggests a possible role for myosin VIIA in axonal migration/pathfinding and/or innervation of vestibular afferents. In addition, myosin VIIA could be used as an early marker for vestibular neurons during the development of the avian AVG.  相似文献   

11.
Within each tapering stereocilium of the cochlea of the alligator lizard is a bundle of actin filaments with > 3,000 filaments near the tip and only 18-29 filaments at the base where the bundle enters into the cuticular plate; there the filaments splay out as if on the surface of a cone, forming the rootlet. Decoration of the hair cells with subfragment 1 of myosin reveals that all the filaments in the stereocilia, including those that extend into the cuticular plate forming the rootlet, have unidirectional polarity, with the arrowheads pointing towards the cell center. The rest of the cuticular plate is composed of actin filaments that show random polarity, and numerous fine, 30 A filaments that connect the rootlet filaments to each other, to the cuticular plate, and to the membrane. A careful examination of the packing of the actin filaments in the stereocilia by thin sectin and by optical diffraction reveals that the filaments are packed in a paracrystalline array with the crossover points of all the actin helices in hear-perfect register. In transverse sections, the actin filaments are not hexagonally packed but, rather, are arranged in scalloped rows that present a festooned profile. We demonstrated that this profile is a product of the crossbridges by examining serial sections, sections of different thicknesses, and the same stereocilium at two different cutting angles. The filament packing is not altered by fixation in different media, removal of the limiting membrane by detergent extraction, or incubation of extracted hair cells in EGTA, EDTA, and Ca++ and ATP. From our results, we conclude that the stereocilia of the ear, unlike the brush border of intestinal epithelial cells, are not designed to shorten, nor do the filaments appear to slide past one another. In fact, the stereocilium is like a large, rigid structure designed to move as a lever.  相似文献   

12.
13.
Hearing loss and balance disorders affect millions of people worldwide. Sensory transduction in the inner ear requires both mechanosensory hair cells (HCs) and surrounding glia-like supporting cells (SCs). HCs are susceptible to death from aging, noise overexposure, and treatment with therapeutic drugs that have ototoxic side effects; these ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic drug cisplatin. Although both classes of drugs are known to kill HCs, their effects on SCs are less well understood. Recent data indicate that SCs sense and respond to HC stress, and that their responses can influence HC death, survival, and phagocytosis. These responses to HC stress and death are critical to the health of the inner ear. Here we have used live confocal imaging of the adult mouse utricle, to examine the SC responses to HC death caused by aminoglycosides or cisplatin. Our data indicate that when HCs are killed by aminoglycosides, SCs efficiently remove HC corpses from the sensory epithelium in a process that includes constricting the apical portion of the HC after loss of membrane integrity. SCs then form a phagosome, which can completely engulf the remaining HC body, a phenomenon not previously reported in mammals. In contrast, cisplatin treatment results in accumulation of dead HCs in the sensory epithelium, accompanied by an increase in SC death. The surviving SCs constrict fewer HCs and display impaired phagocytosis. These data are supported by in vivo experiments, in which cochlear SCs show reduced capacity for scar formation in cisplatin-treated mice compared with those treated with aminoglycosides. Together, these data point to a broader defect in the ability of the cisplatin-treated SCs, to preserve tissue health in the mature mammalian inner ear.Hearing loss affects more than 360 million people worldwide and is often irreversible.1 Mechanosensory hair cells (HCs), the receptor cells of hearing and balance, are not regenerated in the adult mammal and their death results in permanent hearing loss.2, 3 HCs are surrounded by glia-like supporting cells (SCs) that are necessary for HC survival and function (reviewed in Monzack et al.).4 SCs perform many functions, including providing critical trophic factors, preventing excitotoxicity, and mediating regeneration in those systems (non-mammalian vertebrates) capable of replacing lost HCs.5, 6, 7, 8, 9, 10, 11 When HCs die, SCs also preserve the integrity and function of the remaining tissue by forming scars and clearing dead HCs.2, 12, 13, 14, 15, 16, 17 Maintaining a fluid barrier at the surface of the sensory epithelium after damage is necessary to preserve the electro-chemical gradient that drives HC depolarization and therefore sensory transduction after the onset of hearing (reviewed in Wangemann).18Several major stressors cause HC death,19, 20, 21, 22 including aging, noise trauma, and exposure to therapeutic drugs with ototoxic side effects. When a HC is killed by noise or aminoglycoside antibiotics, surrounding SCs form a filamentous actin (F-actin) cable that constricts the HC at its apex.2, 12, 13, 14, 15, 16, 17 This process separates the apical portion of the cell, including the stereocilia bundle, from the HC body and preserves a sealed reticular lamina.23 In the chick utricle, following the apical constriction of dead HCs, the SCs engulf and phagocytose the remaining HC corpse.15 Additional data from the chick indicate that the ototoxic drug cisplatin impairs some SC functions, including regeneration of HCs or clearance of HC debris.24 We hypothesized that SCs would have significant phagocytic activity in the mature mammalian inner ear, and that cisplatin would impair this activity. To examine these dynamic processes, we live-imaged SC phagocytic activity in the adult mouse utricle and compared the SC responses with HC stress and death caused by aminoglycosides versus cisplatin.  相似文献   

14.
The polarization of hair cells from the end organs of the inner ear from the lesser spotted dogfish Scyliorhinus canicula from the order Carcharhiniforms (ground sharks) was studied using a scanning electron microscope (SEM), revealing arrays of hair cells with diverse orientations on each of the sensory epithelia. The greatest numbers of hair cells were found on the utricular epithelium and orientated on the horizontal plane, whilst the smallest number were found on the anterior macula neglecta and orientated on the vertical plane. Examination of the posterior macula neglecta revealed a dense profusion of c. 500 000 individual elongate structures, each resembling long microvilli, a finding not previously described in elasmobranch auditory physiology.  相似文献   

15.
16.
Precursors of cochlear and vestibular hair cells of the inner ear exit the cell cycle at midgestation. Hair cells are mitotically quiescent during late-embryonic differentiation stages and postnatally. We show here that the retinoblastoma gene Rb and the encoded protein pRb are expressed in differentiating and mature hair cells. In addition to Rb, the cyclin dependent kinase inhibitor (CKI) p21 is expressed in developing hair cells, suggesting that p21 is an upstream effector of pRb activity. p21 apparently cooperates with other CKIs, as p21-null mice exhibited an unaltered inner ear phenotype. By contrast, Rb inactivation led to aberrant hair cell proliferation, as analysed at birth in a loss-of-function/transgenic mouse model. Supernumerary hair cells expressed various cell type-specific differentiation markers, including components of stereocilia. The extent of alterations in stereociliary bundle morphology ranged from near-normal to severe disorganization. Apoptosis contributed to the mutant phenotype, but did not compensate for the production of supernumerary hair cells, resulting in hyperplastic sensory epithelia. The Rb-null-mediated proliferation led to a distinct pathological phenotype, including multinucleated and enlarged hair cells, and infiltration of hair cells into the mesenchyme. Our findings demonstrate that the pRb pathway is required for hair cell quiescence and that manipulation of the cell cycle machinery disrupts the coordinated development within the inner ear sensory epithelia.  相似文献   

17.
The occurrence of dark staining cells in different tissues has been suggested to be artefactual and caused during the fixation process. In inner ear sensory epithelia, dark hair cells (DHC) have been suggested to be apoptotic cells. We have examined whether dark cells represent dying cells or whether they are the results of fixation artefacts. The effects of buffer osmolarity and different fixation methods on the incidence of dark hair cells in the inner ear macula sacculi of the rainbow trout (Oncorhynchus mykiss) were investigated by light and electron microscopy. Glutaraldehyde in phosphate buffer with osmolarities of 0, 135, 225, 425, and 560 mosmol were used for fixation by immersion. For comparison, fixation by vascular perfusion as well as the effects of mechanical injury and delayed fixation were studied. DHC were found in all examined saccular maculae except for the delayed fixation protocol where almost all the sensory cells were lost. The number of DHC accounted for 2.5–12.9‰ of the sensory cells. Neither the buffer osmolarity nor the fixation method had significant effects on the frequencies of DHC. Mitotic cell division events were seen exclusively in the apical cell strata of the sensory epithelium. The DHC are suggested to be associated with apoptosis rather than fixation artefacts.  相似文献   

18.
Located on the sensory epithelium of the sickle-shaped cochlea of a 7- to 10-d-old chick are approximately 5,000 hair cells. When the apical surface of these cell is examined by scanning microscopy, we find that the length, number, width, and distribution of the stereocilia on each hair cell are predetermined. Thus, a hair cell located at the distal end of the cochlea has 50 stereocilia, the longest of which are 5.5 microns in length and 0.12 microns in width, while those at the proximal end number 300 and are maximally 1.5 microns in length and 0.2 micron in width. In fact, if we travel along the cochlea from its distal to proximal end, we see that the stereocilia on successive hair cells gradually increase in number and width, yet decrease in length. Also, if we look transversely across the cochlea where adjacent hair cells have the same length and number of stereocilia (they are the same distance from the distal end of the cochlea), we find that the stereocilia of successive hair cells become thinner and that the apical surface area of the hair cell proper, not including the stereocilia, decreases from a maximum of 80 microns2 to 15 microns2. Thus, if we are told the length of the longest stereocilium on a hair cell and the width of that stereocilium, we can pinpoint the position of that hair cell on the cochlea in two axes. Likewise, if we are told the number of stereocilia and the apical surface of a hair cell, we can pinpoint the location of that cell in two axes. The distribution of the stereocilia on the apical surface of the cell is also precisely determined. More specifically, the stereocilia are hexagonally packed and this hexagonal lattice is precisely positioned relative to the kinocilium. Because of the precision with which individual hair cells regulate the length, width, number, and distribution of their cell extensions, we have a magnificent object with which to ask questions about how actin filaments that are present within the cell are regulated. Equally interesting is that the gradient in stereociliary length, number, width, and distribution may play an important role in frequency discrimination in the cochlea. This conclusion is amplified by the information presented in the accompanying paper (Tilney, L.G., E.H. Egelman, D.J. DeRosier, and J.C. Saunders, 1983, J. Cell Biol., 96:822- 834) on the packing of actin filaments in this stereocilia.  相似文献   

19.
The mammalian auditory sensory epithelium, the organ of Corti, contains sensory hair cells and nonsensory supporting cells arranged in a highly patterned mosaic. Notch-mediated lateral inhibition is the proposed mechanism for creating this sensory mosaic. Previous work has shown that mice lacking the Notch ligand JAG2 differentiate supernumerary hair cells in the cochlea, consistent with the lateral inhibitory model. However, it was not clear why only relatively modest increases in hair cell production were observed in Jag2 mutant mice. Here, we show that another Notch ligand, DLL1, functions synergistically with JAG2 in regulating hair cell differentiation in the cochlea. We also show by conditional inactivation that these ligands probably signal through the NOTCH1 receptor. Supernumerary hair cells in Dll1/Jag2 double mutants arise primarily through a switch in cell fate, rather than through excess proliferation. Although these results demonstrate an important role for Notch-mediated lateral inhibition during cochlear hair cell patterning, we also detected abnormally prolonged cellular proliferation that preferentially affected supporting cells in the organ of Corti. Our results demonstrate that the Notch pathway plays a dual role in regulating cellular differentiation and patterning in the cochlea, acting both through lateral inhibition and the control of cellular proliferation.  相似文献   

20.
Liu Z  Owen T  Fang J  Zuo J 《PloS one》2012,7(3):e34123

Background

During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC regeneration by reactivation of Notch1 signaling.

Methodology/Principal Findings

We performed comprehensive in vivo inducible overactivation of NICD at various developmental stages. In CAGCreER+; Rosa26-NICDloxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICD-negative).

Conclusions/Significance

Our data demonstrate that the developmental stage determines responsiveness of embryonic otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type, postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additional pathways that could synergistically interact with Notch1 pathway to produce HCs at postnatal ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号