首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutant strain 1073 of Lemna perpusilla is concluded to be blocked between plastoquinone and cytochrome f in the photosynthetic electron transport system. The location of the block is based on the following observations of activities in chloroplasts isolated from the mutant and wild-type plants. (a) Relative to wild type, electron flow rates from water to ferricyanide, 2,6-dichlorophenol indophenol or NADP were very low in the mutant, but rates of photosystem I-dependent electron flow and cyclic phosphorylation were high. (b) Chlorophyll a fluorescence induction curves for mutant and wild type were similar. (c) Silicomolybdate and lipophilic acceptors in the mutant were photoreduced at rates comparable to wild type. (d) Cytochrome f of the mutant chloroplasts was not reduced by red light, but was oxidized by red or far red light. (e) Reduction of the primary electron acceptor of photosystem II (Q) by ATP-driven reverse electron flow was not observed in the mutant.  相似文献   

2.
Dissected Malpighian tubules from wild type and the eye color mutant white of Drosophila were compared with respect to their abilities to transport tryptophan and kynurenine into tubule cells. It was determined that mutation at white greatly impairs the ability of Malpighian tubule cells to take up tryptophan. Functional studies on the extracellular spaces and ultrastructural observations indicated no differences in these respects between wild type and white tubules. It is consistent with several observations that much of the tryptophan associated with white exists in the intercellular spaces. Furthermore, the uptake of tryptophan by the w + system of wild type tubules is inhibited by the analogue 5-methyl-tryptophan. However, the incorporation of radioactive tryptophan into protein in tubule cells from wild type and white occurs at the same rates and is not affected by 5-methyl-tryptophan. Therefore, it is apparent that Malpighian tubules have a transport system that enables entry of tryptophan into a cellular pool and that this cellular pool is initially independent of the tryptophan pool used for protein synthesis. The mutant white lacks this transport system. From these studies and others it appears that compartmentalization of cellular pools may be brought about via the utilization of specific membrane transport systems.  相似文献   

3.
A mutant in Saccharomyces cerevisiae required one hundred times more K+ than wild type for the same half maximal growth rate. Mutant cells and wild type cells grown at millimolar K+ did not show significant differences in Rb+ transport. In the mutant, a rapid K+ loss induced by azide or incubation (4 h) in K+-free medium decreased the Rb+ transport K m by one half; in the wild type, those treatments decreased the Rb+ K m twenty and one hundred times, respectively. Mutant and wild type did not show significant differences in Na+ transport and in the Na+ inhibition of Rb+ transport, either in normal-K+ cells or in K+-starved cells. The results suggest that either two systems or one system with two interacting sites mediate K+ transport in S. cerevisiae.Abbreviations YPD yeast-peptone-dextrose medium  相似文献   

4.
The effect of leucine-rich repeat kinase 2 (LRRK2) mutation I2020T on its kinase activity has been controversial, with both increased and decreased effects being reported. We conducted steady-state and pre-steady-state kinetic studies on LRRKtide and its analog LRRKtideS. Their phosphorylation differs by the rate-limiting steps: product release is rate-limiting for LRRKtide and phosphoryl transfer is rate-limiting for LRRKtideS. As a result, we observed that the I2020T mutant is more active than wild type (WT) LRRK2 for LRRKtideS phosphorylation, whereas it is less active than WT for LRRKtide phosphorylation. Our pre-steady-state kinetic data suggest that (i) the I2020T mutant accelerates the rates of phosphoryl transfer of both reactions by 3–7-fold; (ii) this increase is masked by a rate-limiting product release step for LRRKtide phosphorylation; and (iii) the observed lower activity of the mutant for LRRKtide phosphorylation is a consequence of its instability: the concentration of the active form of the mutant is 3-fold lower than WT. The I2020T mutant has a dramatically low KATP and therefore leads to resistance to ATP competitive inhibitors. Two well known DFG-out or type II inhibitors are also weaker toward the mutant because they inhibit the mutant in an unexpected ATP competitive mechanism. The I2020 residue lies next to the DYG motif of the activation loop of the LRRK2 kinase domain. Our modeling and metadynamic simulations suggest that the I2020T mutant stabilizes the DYG-in active conformation and creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP competitive fashion.  相似文献   

5.
CO2 gas exchange, ribulose-1,5-bisphosphate, and electron transport have been measured in leaves of a yellow-green mutant of wheat (Triticum durum var Cappelli) and its wild type strain grown in the field. All these parameters, expressed on leaf area basis, were similar in both genotypes except electron transport which was more than double in the wild type. These results, treated according to a recent photosynthesis model for C3 plants, seem to indicate that the electron transport rate of mutant leaves is not sufficient to support the carboxylation derived through both the assimilation rate and the in vitro ribulose-1,5-bisphosphate carboxylase activity. It is suggested that under our experimental conditions photosynthetic electron transport is not the sole energy-dependent determinant of ribulose-1,5-bisphosphate regeneration in the mutant.  相似文献   

6.
The D2 polypeptide of the photosystem II (PSII) complex in the green alga Chlamydomonas reinhardtii is thought to be reversibly phosphorylated. By analogy to higher plants, the phosphorylation site is likely to be at residue threonine-2 (Thr-2). We have investigated the role of D2 phosphorylation by constructing two mutants in which residue Thr-2 has been replaced by either alanine or serine. Both mutants grew photoautotrophically at wild-type rates, and noninvasive biophysical measurements, including the decay of chlorophyll fluorescence, the peak temperature of thermoluminescence bands, and rates of oxygen evolution, indicate little perturbation to electron transfer through the PSII complex. The susceptibility of mutant PSII to photoinactivation as measured by the light-induced loss of PSII activity in whole cells in the presence of the protein-synthesis inhibitors chloramphenicol or lincomycin was similar to that of wild type. These results indicate that phosphorylation at Thr-2 is not required for PSII function or for protection from photoinactivation. In control experiments the phosphorylation of D2 in wild-type C. reinhardtii was examined by 32P labeling in vivo and in vitro. No evidence for the phosphorylation of D2 in the wild type could be obtained. [14C]Acetate-labeling experiments in the presence of an inhibitor of cytoplasmic protein synthesis also failed to identify phosphorylated (D2.1) and nonphosphorylated (D2.2) forms of D2 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results suggest that the existence of D2 phosphorylation in C. reinhardtii is still in question.  相似文献   

7.
We have constructed mutants of Rous sarcoma virus expressing p60src that are underphosphorylated on serine or tyrosine, by linker insertion or insertion/ deletion into cloned Rous sarcoma virus DNA, and recovery of mutant virus by transfection of chicken embryo fibroblasts. Cells infected with mutants whose p60src lack the major site of either serine or tyrosine phosphorylation were morphologically transformed and formed colonies in soft agar. The tyrosine kinase activities of the mutant p60src measured in vivo and in vitro were close to the wild type activity. Peptide mapping showed that phosphorylation on tyrosine and serine of p60src is independent: the major phosphorylated tyrosine and the major phosphorylated serine can each be phosphorylated in the absence of phosphorylation of the other.  相似文献   

8.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated that is deficient in inorganic carbon transport. This mutant strain, designated pmp-1-16-5K (gene locus pmp-1), was selected on the basis of a requirement of elevated CO2 concentration for photoautrophic growth. Inorganic carbon accumulation in the mutant was considerably reduced in comparison to wild type, and the CO2 response of photosynthesis indicated a reduced affinity for CO2 in the mutant. At air levels of CO2 (0.03-0.04%), O2 inhibited photosynthesis and stimulated the synthesis of photorespiratory intermediates in the mutant but not in wild type. Neither strain was significantly affected by O2 at saturating CO2 concentration. Thus, the primary consequence of inorganic carbon transport deficiency in the mutant was a much lower internal CO2 concentration compared to wild type. From these observations, we conclude that enzyme-mediated transport of inorganic carbon is an essential component of the CO2 concentrating system in C. reinhardii photosynthesis.  相似文献   

9.
In higher plants it is now generally considered that glutamate dehydrogenase (GDH) plays only a small or negligible role in ammonia assimilation. To test this specific point, comparative studies of 15NH4+ assimilation were undertaken with a GDH1-null mutant of Zea mays and a related (but not strictly isogenic) GDH1-positive wild type from which this mutant was derived. The kinetics of 15NH4+ assimilation into free amino acids and total reduced nitrogen were monitored in both roots and shoots of 2-week-old seedlings supplied with 5 millimolar 99% (15NH4)2SO4 via the aerated root medium in hydroponic culture over a 24-h period. The GDH1-null mutant, with a 10- to 15-fold lower total root GDH activity in comparison to the wild type, was found to exhibit a 40 to 50% lower rate of 15NH4+ assimilation into total reduced nitrogen. Observed rates of root ammonium assimilation were 5.9 and 3.1 micromoles per hour per gram fresh weight for the wild type and mutant, respectively. The lower rate of 15NH4+ assimilation in the mutant was associated with lower rates of labeling of several free amino acids (including glutamate, glutamine-amino N, aspartate, asparagine-amino N, and alanine) in both roots and shoots of the mutant in comparison to the wild type. Qualitatively, these labeling kinetics appear consistent with a reduced flux of 15N via glutamate in the GDH1-null mutant. However, the responses of the two genotypes to the potent inhibitor of glutamine synthetase, methionine sulfoximine, and differences in morphology of the two genotypes (particularly a lower shoot:root ratio in the GDH1-null mutant) urge caution in concluding that GDH1 is solely responsible for these differences in ammonia assimilation rate.  相似文献   

10.
Peroxisomes are important for recycling carbon and nitrogen that would otherwise be lost during photorespiration. The reduction of hydroxypyruvate to glycerate catalyzed by hydroxypyruvate reductase (HPR) in the peroxisomes is thought to be facilitated by the production of NADH by peroxisomal malate dehydrogenase (PMDH). PMDH, which is encoded by two genes in Arabidopsis (Arabidopsis thaliana), reduces NAD+ to NADH via the oxidation of malate supplied from the cytoplasm to oxaloacetate. A double mutant lacking the expression of both PMDH genes was viable in air and had rates of photosynthesis only slightly lower than in the wild type. This is in contrast to other photorespiratory mutants, which have severely reduced rates of photosynthesis and require high CO2 to grow. The pmdh mutant had a higher O2-dependent CO2 compensation point than the wild type, implying that either Rubisco specificity had changed or that the rate of CO2 released per Rubisco oxygenation was increased in the pmdh plants. Rates of gross O2 evolution and uptake were similar in the pmdh and wild-type plants, indicating that chloroplast linear electron transport and photorespiratory O2 uptake were similar between genotypes. The CO2 postillumination burst and the rate of CO2 released during photorespiration were both greater in the pmdh mutant compared with the wild type, suggesting that the ratio of photorespiratory CO2 release to Rubisco oxygenation was altered in the pmdh mutant. Without PMDH in the peroxisome, the CO2 released per Rubisco oxygenation reaction can be increased by over 50%. In summary, PMDH is essential for maintaining optimal rates of photorespiration in air; however, in its absence, significant rates of photorespiration are still possible, indicating that there are additional mechanisms for supplying reductant to the peroxisomal HPR reaction or that the HPR reaction is altogether circumvented.  相似文献   

11.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated which is deficient in carbonic anhydrase (EC 4.2.1.1) activity. This mutant strain, designated ca-1-12-1C (gene locus ca-1), was selected on the basis of a high CO2 requirement for photoautotrophic growth. Photosynthesis by the mutant at atmospheric CO2 concentration was very much reduced compared to wild type and, unlike wild type, was strongly inhibited by O2. In contrast to a CO2 compensation concentration of near zero in wild type at all O2 concentrations examined, the mutant exhibited a high, O2-stimulated CO2 compensation concentration. Evidence of photorespiratory activity in the mutant but not in wild type was obtained from the analysis of photosynthetic products in the presence of 14CO2. At air levels of CO2 and O2, the mutant synthesized large amounts of glycolate, while little glycolate was synthesized by wild type under identical conditions. Both mutant and wild type strains formed only small amounts of glycolate at saturating CO2 concentration. At ambient CO2, wild type accumulated inorganic carbon to a concentration several-fold higher than that in the suspension medium. The mutant cells accumulated inorganic carbon internally to a concentration 6-fold greater than found in wild type, yet photosynthesis was CO2 limited. The mutant phenotype was mimicked by wild type cells treated with ethoxyzolamide, an inhibitor of carbonic anhydrase activity. These observations indicate a requirement for carbonic anhydrase-catalyzed dehydration of bicarbonate in maintaining high internal CO2 concentrations and high photosynthesis rates. Thus, in wild type cells, carbonic anhydrase rapidly converts the bicarbonate taken up to CO2, creating a high internal CO2 concentration which stimulates photosynthesis and suppresses photorespiration. In mutant cells, bicarbonate is taken up rapidly but, because of a carbonic anhydrase deficiency, is not dehydrated at a rate sufficiently rapid to maintain a high internal CO2 concentration.  相似文献   

12.
A Mutant of Escherichia coli 15T? (555-7) has been isolated which grows at a rate equal to that of the wild type at division times of 40 min or less, but grows faster than normal at division times greater than 40 min. At division times greater than 40 min the division time of the mutant is identical to the chromosome synthesis time of the wild type in the same medium. In one slow-growth medium (M9-aspartic acid) chromosome synthesis and gap times of the mutant were measured and the time required for synthesis of a chromosome was approximately the same as that of the wild type, but the gap in DNA synthesis observed in the mutant was only about 12% of that observed in wild type.  相似文献   

13.
In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD+ ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD+ ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3.  相似文献   

14.
Phosphorylation of photosystem II (PSII) proteins affects macroscopic structure of thylakoid photosynthetic membranes in chloroplasts of the model plant Arabidopsis. In this study, light-scattering spectroscopy revealed that stacking of thylakoids isolated from wild type Arabidopsis and the mutant lacking STN7 protein kinase was highly influenced by cation (Mg++) concentrations. The stacking of thylakoids from the stn8 and stn7stn8 mutants, deficient in STN8 kinase and consequently in light-dependent phosphorylation of PSII, was increased even in the absence of Mg++. Additional PSII protein phosphorylation in wild type plants exposed to high light enhanced Mg++-dependence of thylakoid stacking. Protein phosphorylation in the plant leaves was analyzed during day, night and prolonged darkness using three independent techniques: immunoblotting with anti-phosphothreonine antibodies; Diamond ProQ phosphoprotein staining; and quantitative mass spectrometry of peptides released from the thylakoid membranes by trypsin. All assays revealed dark/night-induced increase in phosphorylation of the 43 kDa chlorophyll-binding protein CP43, which compensated for decrease in phosphorylation of the other PSII proteins in wild type and stn7, but not in the stn8 and stn7stn8 mutants. Quantitative mass spectrometry determined that every PSII in wild type and stn7 contained on average 2.5±0.1 or 1.4±0.1 phosphoryl groups during day or night, correspondingly, while less than every second PSII had a phosphoryl group in stn8 and stn7stn8. It is postulated that functional cation-dependent stacking of plant thylakoid membranes requires at least one phosphoryl group per PSII, and increased phosphorylation of PSII in plants exposed to high light enhances stacking dynamics of the photosynthetic membranes.  相似文献   

15.
The nr1 soybean (Glycine max [L.] Merr.) mutant does not contain the two constitutive nitrate reductases, one of which is responsible for enzymic conversion of nitrite to NOx (NO + NO2). It was tested for possible nonenzymic NOx formation and evolution because of known chemical reactions between NO2 and plant metabolites and the instability of nitrous acid. It did not evolve NOx during the in vivo NR assay, but intact leaves did evolve small amounts of NOx under dark, anaerobic conditions. Experiments were conducted to compare NO3 reduction, NO2 accumulation, and the NOx evolution processes of the wild type (cv Williams) and the nr1 mutant. In vivo NR assays showed that wild-type leaves had three times more NO3 reducing capacity than the nr1 mutant. NOx evolution from intact, anerobic nr1 leaves was approximately 10 to 20% that from wild-type leaves. Nitrite content of the nr1 mutant leaves was usually higher than wild type due to low NOx evolution. Lag times and threshold NO2 concentrations for NOx evolution were similar for the two genotypes. While only 1 to 2% of NOx from wild type is NO2, the nr1 mutant evolved 15 to 30% NO2. The kinetic patterns of NOx evolution with time weré completely different for the mutant and wild type. Comparisons of light and heat treatments also gave very different results. It is generally accepted that the NOx evolution by wild type is primarily an enzymic conversion of NO2 to NO. However, this report concludes that NOx evolution by the nr1 mutant was due to nonenzymic, chemical reactions between plant metabolites and accumulated NO2 and/or decomposition of nitrous acid. Nonenzymic NOx evolution probably also occurs in wild type to a degree but could be easily masked by high rates of the enzymic process.  相似文献   

16.
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export.  相似文献   

17.
A nystatin-resistant mutant (NR-21) of a thermotolerant yeast, Hansenula polymorpha CK-1, was isolated by mutagenesis with ethyl methanesulfonate, followed by selection for resistance to nystatin (50 units/ml). The mutant was defective in ergosterol biosynthesis. Specific growth rates (h−1 of the mutant were reduced to 0.35 at 40°C and 0.16 at 50°C as compared with the wild type (0.53 at 40°C and 0.28 at 50°C). The mutant grown with ergosterol-phosphatidylcholine emulsion at 50°C incorporated ergosterol and its specific growth rate was increased to 0.41, which was comparable to that of the wild type grown under the same conditions.  相似文献   

18.
《BBA》2003
The genome of the cyanobacterium Synechocystis sp. PCC 6803 contains genes identified as menD and menE, homologs of Escherichia coli genes that code for 2-succinyl-6-hydroxyl-2,4-cyclohexadiene-1-carboxylate (SHCHC) synthase and O-succinylbenzoic acid–CoA ligase in the menaquinone biosynthetic pathway. In cyanobacteria, the product of this pathway is 2-methyl-3-phytyl-1,4-naphthoquinone (phylloquinone), a molecule used exclusively as an electron transfer cofactor in Photosystem (PS) I. The menD and menE strains were generated, and both were found to lack phylloquinone. Hence, no alternative pathways exist in cyanobacteria to produce O-succinylbenzoyl–CoA. Q-band EPR studies of photoaccumulated quinone anion radical and optical kinetic studies of the P700+ [FA/FB] backreaction indicate that in the mutant strains, plastoquinone-9 functions as the electron transfer cofactor in the A1 site of PS I. At a light intensity of 40 μE m−2 s−1, the menD and menE mutant strains grew photoautotrophically and photoheterotrophically, but with doubling times slower than the wild type. Both of which are sensitive to high light intensities. Low-temperature fluorescence studies show that in the menD and menE mutants, the ratio of PS I to PS II is reduced relative to the wild type. Whole-chain electron transfer rates in the menD and menE mutant cells are correspondingly higher on a chlorophyll basis. The slower growth rate and high-light sensitivity of the menD and menE mutants are therefore attributed to a lower content of PS I per cell.  相似文献   

19.
The Ter-15 mutant derived from E. coli K12 W2252-11U? RCstr (wild type I) is found to be sensitive to φx174 phage infection. Lipopolysaccharide extracted from this mutant inactivates the phage, and has core oligosaccharides identical in amounts to those in the lipopolysaccharide from wild type cells.In contrast, the Ter-21 mutant derived from E. coli K12 W2252-11U? RCrel (wild type II) is not sensitive to this phage infection, and its lipopolysaccharide does not inactivate the phage. Its lipopolysaccharide sugars are found to be D-glucose and D-ribose, thus differing from the lipopolysaccharide sugars of the wild type cells.  相似文献   

20.
De novo mutations in ATP1A3, the gene encoding the α3-subunit of Na+,K+-ATPase, are associated with the neurodevelopmental disorder Alternating Hemiplegia of Childhood (AHC). The aim of this study was to determine the functional consequences of six ATP1A3 mutations (S137Y, D220N, I274N, D801N, E815K, and G947R) associated with AHC. Wild type and mutant Na+,K+-ATPases were expressed in Sf9 insect cells using the baculovirus expression system. Ouabain binding, ATPase activity, and phosphorylation were absent in mutants I274N, E815K and G947R. Mutants S137Y and D801N were able to bind ouabain, although these mutants lacked ATPase activity, phosphorylation, and the K+/ouabain antagonism indicative of modifications in the cation binding site. Mutant D220N showed similar ouabain binding, ATPase activity, and phosphorylation to wild type Na+,K+-ATPase. Functional impairment of Na+,K+-ATPase in mutants S137Y, I274N, D801N, E815K, and G947R might explain why patients having these mutations suffer from AHC. Moreover, mutant D801N is able to bind ouabain, whereas mutant E815K shows a complete loss of function, possibly explaining the different phenotypes for these mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号