首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In multi-segmented total-human-body models the most difficult and the least successful modeling of a major articulating joint has been the shoulder complex because of the lack of appropriate biomechanical data as well as the anatomical complexity of the region. In this paper, quantitative results on the three-dimensional passive resistive properties beyond the voluntary shoulder complex sinus are presented by applying the methodology developed in part I. Constant-restoring-force(moment) contours are established for the shoulder complex and the numerical results are presented for the three subjects tested. In addition, functional expansions are presented for the voluntary and restoring force(moment) contours using spherical coordinates.  相似文献   

4.
5.
In mathematical modeling of multi-segmented articulating total-human-body, there is no doubt that the shoulder complex plays one of the most important roles. However, proper biomechanical passive resistive force data have been lacking in the literature. This paper presents determination of the three-dimensional passive resistive joint properties beyond the maximal voluntary shoulder complex sinus. A functional expansion with two spherical angular variables in the local joint axis system is proposed to fit the overall restoring force (moment) data. A constant restoring force (moment) contour map as well as a three-dimensional perspective view of the results are presented in a new coordinate system defined in this study. Finally, a statistical data base is established by utilizing the statistical analysis procedures discussed in Part I of this paper.  相似文献   

6.
7.
8.
The golf swing is a complex full body movement during which the spine and shoulders are highly involved. In order to determine shoulder kinematics during this movement, multibody kinematics optimization (MKO) can be recommended to limit the effect of the soft tissue artifact and to avoid joint dislocations or bone penetration in reconstructed kinematics. Classically, in golf biomechanics research, the shoulder is represented by a 3 degrees-of-freedom model representing the glenohumeral joint. More complex and physiological models are already provided in the scientific literature. Particularly, the model used in this study was a full body model and also described motions of clavicles and scapulae. This study aimed at quantifying the effect of utilizing a more complex and physiological shoulder model when studying the golf swing. Results obtained on 20 golfers showed that a more complex and physiologically-accurate model can more efficiently track experimental markers, which resulted in differences in joint kinematics. Hence, the model with 3 degrees-of-freedom between the humerus and the thorax may be inadequate when combined with MKO and a more physiological model would be beneficial. Finally, results would also be improved through a subject-specific approach for the determination of the segment lengths.  相似文献   

9.
The movements of the humerus, the clavicle, and the scapula are not completely independent. The coupled pattern of movement of these bones is called the shoulder rhythm. To date, multiple studies have focused on providing regression-based 3-D shoulder rhythms, in which the orientations of the clavicle and the scapula are estimated by the orientation of the humerus. In this study, six existing regression-based shoulder rhythms were evaluated by an independent dataset in terms of their predictability. The datasets include the measured orientations of the humerus, the clavicle, and the scapula of 14 participants over 118 different upper arm postures. The predicted orientations of the clavicle and the scapula were derived from applying those regression-based shoulder rhythms to the humerus orientation. The results indicated that none of those regression-based shoulder rhythms provides consistently more accurate results than the others. For all the joint angles and all the shoulder rhythms, the RMSE are all greater than 5°. Among those shoulder rhythms, the scapula lateral/medial rotation has the strongest correlation between the predicted and the measured angles, while the other thoracoclavicular and thoracoscapular bone orientation angles only showed a weak to moderate correlation. Since the regression-based shoulder rhythm has been adopted for shoulder biomechanical models to estimate shoulder muscle activities and structure loads, there needs to be further investigation on how the predicted error from the shoulder rhythm affects the output of the biomechanical model.  相似文献   

10.
Upper-arm evaluation including shoulder motion in physiotherapy has no three-dimensional tool for an arm-functioning evaluation, which hampers an uniform, objective comparison. Human shoulder complex models suffer from lack of shoulder girdle kinematic data. A kinematic shoulder-complex model with six degrees of freedom is proposed as the composition of the inner joint representing the shoulder-girdle joints and outer joint representing the glenohumeral joint. The outer shoulder joint has three perpendicular rotations: adduction/abduction, retroflexion/flexion and internal/external rotation of the humerus. The inner shoulder joint has two rotations, depression/elevation and retraction/protraction, and one translation, which are all dependent on the elevation angle of the humerus. The human arm-reachable workspace that represents the area within reach of the wrist is calculated on the basis of the shoulder-complex model and the additional elbow-joint direct kinematics. It was demonstrated that cross-sections of the calculated workspace are in agreement with the measured arm-reachable workspace in all three anatomical planes. The arm-reachable workspace volume and graphics were calculated and a comparison of the arm's workspaces during a patient's shoulder treatment was made. The obtained numerical and graphical arm-reachable workspaces can be used for arm-functioning evaluations in rehabilitation and ergonomics.  相似文献   

11.
In this paper the concept of a three-dimensional biomechanical model of the human shoulder is introduced. This model is used to analyze static load sharing between the muscles, the bones and the ligaments. The model consists of all shoulder structures, which means that different positions and different load situations may be analyzed using the same model. Solutions can be found for the complete range of shoulder motion. However, this article focuses only on elevation in the scapular plane and on forces in structures attached to the humerus. The intention is to expand the model in future studies to also involve the forces acting on the other shoulder bones: the scapula and the clavicle. The musculoskeletal forces in the shoulder complex are predicted utilizing the optimization technique with the sum of squared muscle stresses as an objective function. Numerical results predict that among the muscles crossing the glenohumeral joint parts of the deltoideus, the infraspinatus, the supraspinatus, the subscapularis, the pectoralis major, the coracobrachialis and the biceps are the muscles most activated during this sort of abduction. Muscle-force levels reached values of 150 N when the hand load was 1 kg. The results from the model seem to be qualitatively accurate, but it is concluded that in the future development of the model the direction of the contact force in the glenohumeral joint must be constrained.  相似文献   

12.
Our purpose in this study was to apply the virtual, interactive, musculoskeletal system (VIMS) software for modeling and biomechanical analysis of the glenohumeral joint during a baseball pitching activity. The skeletal model was from VIMS library and muscle fiber attachment sites were derived from the visible human dataset. The muscular moment arms and function changes are mainly due to the large humeral motion involved during baseball pitching. The graphic animation of the anatomic system using VIMS software is an effective tool to model and visualize the complex anatomical structure of the shoulder for biomechanical analysis.  相似文献   

13.
Although numerical models on the shoulder complex joint are currently available, many are impractical because of the procedural complexity coupled with limited and mere simple simulations. The present study defined the clavicle-scapula system as the "base of the humerus" in determining the position of proximal head of humerus, rendering conclusive innovation of a six degree of freedom (DOF) shoulder complex joint model. Furthermore, a complete measurement system where evaluation by calibrating the actual values via the use of an electromagnetic tracking device (ETD) was developed based on the innovated model. The special calibration method using optimizing calculation to work out the rotational center of humerus was employed and actually tested if the theoretical consideration was practically available. As a result of accuracy check experiments, the measurement error was defined within 2-3 mm, indicating sufficient accuracy in studies for human movement. Our findings strongly advocate that the benefit of this novel measurement system would contribute to studies related to shoulder movements in physiological anthropology.  相似文献   

14.
Strength profiles of the shoulder joint are measured experimentally for two arm positions in "the scapular plane" in order to present quantitative data on the shoulder strength. Apart from yielding the actual force a subject can exert in various directions, these measurements also exhibit e.g. the strongest and weakest directions, in fact the relative strength in all directions. The inter-individual variation of the direction of maximal force was at most 14 degrees (sd). The experimental profiles are compared with the corresponding theoretical profiles, obtained by using a shoulder model. The calculations were made both with default muscle parameters and individually adapted parameters. The results show that the employed shoulder model, which is based on data from an elderly population, may be adapted to other populations and that the necessary changes in relative muscle strength are those expected on biomechanical grounds. Without model changes the difference between measured (in the mean) and predicted maximal force directions was at most 50 degrees. Muscle parameter adjustment reduced this difference to 23 degrees. The strength profiles clearly indicate in what direction a person can produce larger forces and which muscles that contribute.  相似文献   

15.
A major requirement to design an implant is to develop our understanding of the applied internal forces during everyday activities. In the absence of any basic apparatus for measuring forces directly, it is essential to rely on modelling. The major aim of this study was therefore to understand the biomechanical function of subjects with the reversed anatomy Bayley?Walker prosthesis, using an inverse dynamic shoulder model. In this context, the muscle and joint forces of 12 Bayley–Walker subjects were compared to those of 12 normal subjects during 12 activities of daily living.Maximum glenohumeral contact forces for normal and Bayley–Walker subjects were found to be 77% (±15) and 137% (±21) body weight for lifting a 2 kg shopping bag, and the least forces 29% (±4) and 67% (±8) body weight for reaching to opposite axilla, respectively. For normal subjects, middle deltoid, supraspinatus and infraspinatus were found to be the most active muscles across the subjects and tasks. On the other hand, for implanted subjects with a lack of rotator cuff muscles, the middle deltoid and coracobrachialis muscles were found to be the most active. The biomechanical model can therefore be used in order to gain knowledge about the pathology as well as possible post surgical rehab for subjects with reversed shoulder replacement.  相似文献   

16.
In biomechanical modeling of the shoulder, it is important to know the orientation of each bone in the shoulder girdle when estimating the loads on each musculoskeletal element. However, because of the soft tissue overlying the bones, it is difficult to accurately derive the orientation of the clavicle and scapula using surface markers during dynamic movement. The purpose of this study is to develop two regression models which predict the orientation of the clavicle and the scapula. The first regression model uses humerus orientation and individual factors such as age, gender, and anthropometry data as the predictors. The second regression model includes only the humerus orientation as the predictor. Thirty-eight participants performed 118 static postures covering the volume of the right hand reach. The orientation of the thorax, clavicle, scapula and humerus were measured with a motion tracking system. Regression analysis was performed on the Euler angles decomposed from the orientation of each bone from 26 randomly selected participants. The regression models were then validated with the remaining 12 participants. The results indicate that for the first model, the r2 of the predicted orientation of the clavicle and the scapula ranged between 0.31 and 0.65, and the RMSE obtained from the validation dataset ranged from 6.92° to 10.39°. For the second model, the r2 ranged between 0.19 and 0.57, and the RMSE obtained from the validation dataset ranged from 6.62° and 11.13°. The derived regression-based shoulder rhythm could be useful in future biomechanical modeling of the shoulder.  相似文献   

17.
New trends of numerical models of human joints require more and more computation of both large amplitude joint motions and fine bone stress distribution. Together, these problems are difficult to solve and very CPU time consuming. The goal of this study is to develop a new method to diminish the calculation time for this kind of problems which include calculation of large amplitude motions and infinitesimal strains. Based on the Principle of Virtual Power, the present method decouples the problem into two parts. First, rigid body motion is calculated. The bone micro-deformations are then calculated in a second part by using the results of rigid body motions as boundary conditions. A finite element model of the shoulder was used to test this decoupling technique. The model was designed to determine the influence of humeral head shape on stress distribution in the scapula for different physiological motions of the joint. Two versions of the model were developed: a first version completely deformable and a second version based on the developed decoupling method. It was shown that biomechanical variables, as mean pressure and von Mises stress, calculated with the two versions were sensibly the same. On the other hand, CPU time needed for calculating with the new decoupled technique was more than 6 times less than with the completely deformable model.  相似文献   

18.

Aim

Isokinetic assessment of biomechanical parameters of the shoulder joint at the operated side versus non-operated side in patients treated surgically for breast cancer according to the type of surgery performed.

Background

Despite significant progress in medicine, comprehensive cancer therapy may still cause a number of undesired structural and functional effects. The most frequent complications include long-term weakening of muscles within the shoulder and upper extremity at the operated side.

Materials and methods

The study enrolled 57 patient, divided into two groups: mastectomy and BCT. Diagnostic tests were carried out on the groups to assess biomechanical parameters (peak torque, power, total work) of the shoulder joint in internal and external rotation.

Results

The results of the isokinetic test revealed a considerable reduction of dynamic properties of the muscle groups responsible for the function of the shoulder joint at the operated side. The deficits observed, depending on the angular speed and plane of rotation, were from 22.3% to 32.7% and from 23.1% to 29.4% for muscle power and total work, respectively. The least noticeable loss was that of muscular torque, ranging from 6.5% to 18.3%.

Conclusion

None of the treatment methods applied ensured a full release of the restriction within the shoulder and upper limb. The deficits observed may constitute a serious disorder of the musculoskeletal system; therefore, a clinical study of biomechanical parameters of the shoulder joint may be an important control of patients’ functional status after breast cancer treatment.  相似文献   

19.
Biomechanical model of the human shoulder--I. Elements   总被引:2,自引:0,他引:2  
  相似文献   

20.
This paper presents some results on the modelling and the corresponding parameter estimation of the human shoulder. This system consists of the clavicle, the scapula, the humerus and the various joints between these bodies and the trunk through the sternum; it will be represented as a succession of a rotational joint between the sternum and the clavicle and a constant distance joint, representing the scapula between, the clavicle and the humerus head. The parameters of this system are the components of the position vectors of the joint characteristic points (the corresponding centres of the rotations). Experimental results are presented as well as a validation of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号