首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
he consumption of bracken-fern (Pteridium aquilinum) as food is associated with a high incidence of cancer in humans and animals. Thus far, the carcinogenic effects of bracken-fern consumption could be related to chromosome aberrations verified in animal and in human peripheral lymphocytes. We tested the in vitro effects of vitamin C (10 and 100 μg/ml) on the reversibility of DNA damage caused by bracken-fern on human submandibular gland (HSG) cells and on oral epithelium cells (OSCC-3) previously exposed to bracken-fern extract. DNA damage (i.e. nuclei with increased levels of DNA migration) was determined by comet assay, cell morphology was evaluated by light microscopy and cellular degeneration was assessed by the acridine orange/ethidium bromide fluorescent-dyeing test. Results showed that vitamin C alone did not reduce DNA damage caused by bracken-fern in HSG and OSSC-3 cells. However, at a higher concentration (100 μg/ml), vitamin C induced DNA damage in both cell lines. Moreover, vitamin C (10 and 100 μg/ml) together with bracken-fern extract showed synergistic effects on the frequency of DNA damage in HSG cells. In addition, cells treated with bracken-fern extract or vitamin C alone, or with their association, showed apoptosis morphological features, such as chromatin condensation, cytoplasmic volume loss, changes in membrane symmetry and the appearance of vacuoles; these alterations were observed in both cell lines. These results demonstrate that bracken-fern extract was cytotoxic to HSG and OSCC-3 cells, causing cell death by apoptosis, and that vitamin was not able to revert these effects.  相似文献   

2.
Apoptotic cell death is characterized by the activation of the apoptotic signal transduction pathway on one hand and a number of regularly found morphological and biochemical features, such as nuclear condensation and mitochondrial depolarisation. Although much of our knowledge of apoptosis was obtained using noxious stimuli in cell culture, these apoptotic stimuli are likely to have numerous off-target effects that may contribute to or obscure the immediate effects of the apoptotic pathway. We have developed a cellular model where mitochondrial apoptosis is directly triggered by the tetracycline-regulated expression of the pro-apoptotic BH3-only protein BimS. We report the comparison of BimS-induced apoptosis with the commonly used apoptotic stimuli staurosporine and UV-light. While the release of mitochondrial cytochrome c and Smac/DIABLO, activation of caspases and nuclear morphological changes occurred with very similar kinetics, striking differences were found in other apoptotic assays. In particular, drop in mitochondrial membrane potential, loss of plasma membrane integrity and the appearance of sub-G1 nuclei were strongly reduced in cells dying upon BimS-induction, compared to staurosporine- or UV-induced apoptosis. The results thus indicate that the link between the apoptotic pathway and commonly used indicators of apoptosis is less tight than it appears from experiments with cytotoxic stimuli.  相似文献   

3.

Background  

When exposed to oxidative conditions, cells suffer not only biochemical alterations, but also morphologic changes. Oxidative stress is a condition induced by some pro-oxidant compounds, such as by tert-butylhydroperoxide (tBHP) and can also be induced in vivo by ischemia/reperfusion conditions, which is very common in cardiac tissue. The cell line H9c2 has been used as an in vitro cellular model for both skeletal and cardiac muscle. Understanding how these cells respond to oxidative agents may furnish novel insights into how cardiac and skeletal tissues respond to oxidative stress conditions. The objective of this work was to characterize, through vital imaging, morphological alterations and the appearance of apoptotic hallmarks, with a special focus on mitochondrial changes, upon exposure of H9c2 cells to tBHP.  相似文献   

4.
Summary The mammalian intestinal epithelium has been found, based on in vivo experiments, to be resistant to insecticidal Cry toxins, which are derived from Bacillus thuringiensis and fatally damage insect midgut cells. Thus, the toxins are commonly used as a genetic resource in insect-resistant transgenic plants for feed. However, Cry toxins bind to the cellular brush border membrane vescle (BBMV) of mammalian intestinal cells. In this study, we investigated the affinity of Cry1Ab toxin, a lepidopteran-specific Cry1-type toxin, to the cellular BBMV of two mammalian intestinal cells as well as the effect of the toxin on the membrane potential of three mammalian intestinal cells compared to its effects on the silkworm midgut cell. We found that Cry1Ab toxin did bind to the bovine and porcine BBMV, but far more weakly than it did to the silkworm midgut BBMV. Furthermore, although the silkworm midgut cells developed severe membrane potential changes within 1 h following the toxin treatment at a final concentration of 2 μg/ml, no such membraneous changes were observed on the bovine, procine, and human intestinal cells. The present in vitro results suggest that, although Cry1Ab toxin may bind weakly or nonspecifically to certain BBMV components in the mammalian intestinal cell, it does not damage the cell’s membrane integrity, thus exerting no subsequent adverse effects on the cell.  相似文献   

5.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 ± 115 fmol/μg DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 ± 17 fmol/μg DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

6.
Cultured epidermal cells from explants of skin of rainbow trout were used to study the cytological and functional changes following sublethal exposure to cadmium stress. The aim was to develop diagnostic markers for ecotoxicology. Cultures were exposed to the pollutant for 48 h. Cell structural and cytological changes were established by light and electron microscopy. Metabolic alterations were detected by immunohistochemistry. The relation between the initiation of cellular alterations and cadmium concentrations was compared in cultures exposed in commercially-available serum-free and serum-containing medium. The expression of stress proteins (metallothionein and heat shock protein) was also studied. Rainbow trout epithelial cells exposed to cadmium showed typical morphological changes indicative of cell death by apoptosis. Sublethal exposure also resulted in cellular metabolic disturbances with increased deposits of glycogen. Increased melanization was also observed. These changes appeared at lower concentrations of cadmium when cells were exposed in serum-free media than in serum-containing media. Cadmium induced the expression of heat shock proteins but not of metallothioneins. The results broadly confirm in vivo findings for cadmium toxicity and suggest that this in vitro technique may have applications in aquatic toxicology. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Chemotherapy continues to be the main therapeutic approach in the treatment of hematological malignancies including acute leukemia. Generally, chemotherapy is used to eliminate cancer cells and to restore normal bone marrow function. Simultaneous action of cytostatic drugs on bone marrow angiogenesis decreases the formation of new capillaries and improves therapeutic effect. However, chemotherapeutic agents may also be cytodestructive for cellular elements of other tissues, particularly the vascular endothelium, which can lead to various cardiovascular complications. In this work, we studied the effects of 2 cytostatic drugs, cytosine arabinoside (ara-C) and daunorubicin (DNR), on cultured human vascular (i.e., umbilical) endothelial cells (ECs). Ara-C and DNR were added to cultured cells at concentrations ranging from 1 ng/mL to 100 microg/mL. Drug effects were studied using phase-contrast microscopy, cell viability tests, BRDU incorporation, immunohistochemistry, flow cytometry, and cell cloning. At various concentrations, ara-C and DNR are able to induce morphological and functional changes in cultured cells related to either cytostatic or cytotoxic action. Moreover, ara-C-treated cultured cells displayed significant disturbances in cell adhesion molecule expression and interaction with blood leukocytes. Preliminary data obtained on acute leukemia patients undergoing standard cytostatic therapy ("7+3" regimen) have shown that concentration of the circulating ECs was significantly increased compared with the control group and could be as high as 500-1500 cells/mL of blood. Results obtained suggest that anticancer chemotherapy may induce systemic damage of vascular endothelium related to massive cell loss and (or) alterations of endothelial function.  相似文献   

8.
ATR, a human phosphatidylinositol 3-kinase-related kinase, is an important component of the cellular response to DNA damage. In the present study, we evaluated the role of ATR in modulating the response of cells to S phase-associated DNA double-stranded breaks induced by topoisomerase poisons. Prolonged exposure to low doses of the topoisomerase I poison topotecan (TPT) resulted in S phase slowing because of diminished DNA synthesis at late-firing replicons. In contrast, brief TPT exposure, as well as prolonged exposure to the topoisomerase II poison etoposide, resulted in subsequent G(2) arrest. These responses were associated with phosphorylation of the checkpoint kinase Chk1. The cell cycle responses and phosphorylation of Chk1 were markedly diminished by forced overexpression of a dominant negative, kinase-inactive allele of ATR. In contrast, deficiency of the related kinase ATM had no effect on these events. The loss of ATR-dependent checkpoint function sensitized GM847 human fibroblasts to the cytotoxic effects of the topoisomerase I poisons TPT and 7-ethyl-10-hydroxycamptothecin, as assessed by inhibition of colony formation, increased trypan blue uptake, and development of apoptotic morphological changes. Expression of kdATR also sensitized GM847 cells to the cytotoxic effects of prolonged low dose etoposide and doxorubicin, albeit to a smaller extent. Collectively, these results not only suggest that ATR is important in responding to the replication-associated DNA damage from topoisomerase poisons, but also support the view that ATM and ATR have unique roles in activating the downstream kinases that participate in cell cycle checkpoints.  相似文献   

9.
Abstract

The effect of square pulsed magnetic signals on the growth of Dickeya solani bacterium was studied. Three different frequency windows in a range up to 50?Hz were selected for exposure to determine the frequencies causing maximum bacteriostatic and bactericidal effects. Furthermore, the cellular morphological changes under most inhibitory conditions were studied and bacterial pathogenicity was examined. The obtained data showed the most inhibitory frequency that caused an inhibition by 65% and delayed the cellular growth by more than 8?h is 5?Hz. The morphological studies of exposed bacterium cells showed cellular abnormalities and fragmentations and loss of membrane outer surface charges. The pathogenicity test exposed a significant decrease in the infection reached 68%. In conclusion, the present study developed better disease strategy for controlling the bacterium of D. solani in an efficient and safe manner. Moreover, the applicability of using pulsed electromagnetic signals may have a good role in bacterial inhibition.  相似文献   

10.
Summary The cytotoxicity of a Bence-Jones protein was assessed using a porcine renal tubule cell line (LLC-PK1), with the aim of developing a model for studying the potential nephrotoxicity of these proteins. The effects of a kappa Bence-Jones protein on cell viability were studied by means of biochemical methods (supravital dye uptake and measurement of cellular enzyme activities) and morphological electron microscopy. After a 24-h-treatment with Bence-Jones protein, a moderate cytotoxicity (about 15%) was noted but only a minor difference compared to treatment with bovine albumin in the same conditions. The morphological study showed a few cells in the process of lysis, but their numbers were insufficient for the demonstration of a clear cytotoxic effect. Immunocytochemical studies showed Bence-Jones protein fixation on some cells, especially on the outer membrane. Labeling of the hyaloplasm and basal pole of a few cells pointed to internalization of protein by LLC-PK1 cells. Although the cytotoxicity of the Bence-Jones protein tested here was only moderate, the use of this model enabled its cytotoxic effect to be distinguished from that ofβ-lactoglobulin. This isolate could serve as a “moderate control” for a later study with a BJP having caused acute renal failure.  相似文献   

11.

Background  

Apoptotic cell death plays an essential part in embryogenesis, development and maintenance of tissue homeostasis in metazoan animals. The culmination of apoptosis in vivo is the phagocytosis of cellular corpses. One morphological characteristic of cells undergoing apoptosis is loss of plasma membrane phospholipid asymmetry and exposure of phosphatidylserine on the outer leaflet. Surface exposure of phosphatidylserine is recognised by a specific receptor (phosphatidylserine receptor, PSR) and is required for phagocytosis of apoptotic cells by macrophages and fibroblasts.  相似文献   

12.
Teleost fish have recently been implemented as suitable model organisms to study vertebrate development, in particular skeletogenesis. In vitro cell systems derived from fish bone have been successfully established, although their development has been hampered by the limited availability of fish serum to supplement culture medium. Commercially available sera are mostly of mammalian origin and thus not necessarily adequate to fish cell growth. The main objective of this work was to compare proliferative and mineralogenic potential of bovine and fish sera using fish bone‐derived cell lines VSa13 and VSa16. Fish serum was shown to (i) strongly stimulate cell proliferation in an apparent dose‐dependent and cell type‐specific manner, (ii) induce morphological changes, and (iii) enhance extracellular matrix mineralization of bone cells, although cytotoxic for fish osteoblast‐like cells at the concentration tested. To better understand mechanisms underlying mineralogenic effect of fish serum in fish chondrocytes, expression of several mineralization‐related genes was evaluated by qPCR. Regulation of matrix Gla protein (MGP) and bone morphogenetic protein 2 (BMP2) gene expression was modified upon culture with fish serum in a way compatible with an early onset and an increase in mineralization. In conclusion, fish serum was shown to be more adequate to proliferation and differentiation/mineralization of fish bone‐derived cells.  相似文献   

13.
Rodent fibroblasts transformed with the Kirsten and Moloney murine sarcoma viruses exhibit increased resistance to the growth inhibitory and cytotoxic action of the carboxylic Na+/H+ ionophore, monensin. The inhibitory effect of monensin on cell proliferation requires exposure for periods longer than 24 hours. The virus-transformed cells also exhibit increased resistance to the K+/H+ ionophore, nigericin. Since monensin is known to have significant effects upon the function and activity of the Golgi apparatus and the intracellular trafficking and processing of endocytosed as well as cell-derived materials, the results suggest that alterations in the activities of the organelles and pathways involved with intracellular protein trafficking and processing likely make an important contribution to the biological and cellular properties of transformed cells.  相似文献   

14.
Ethanol exposure during development leads to alterations in neuronal differentiation and profound neuronal loss in multiple regions of the developing brain. Although differentiating Purkinje cells of the cerebellum are particularly vulnerable to ethanol exposure, the mechanisms that ameliorate ethanol-induced Purkinje cell loss have not been well defined. Previous research indicates that glial-derived neurotrophic factor (GDNF), a member of the transforming growth factor-β family, promotes the survival of several neuronal populations, including cerebellar Purkinje cells. Therefore, we examined whether GDNF could attenuate ethanol-induced Purkinje cell loss in an in vitro model system using calbindin-D28k-immunoreactivity as a specific marker for Purkinje cells. We found that ethanol led to a significant dose-related decline in calbindin-D28k-immunoreactive cells in explant cultures of the developing cerebellum. However, concurrent administration of GDNF led to a significant rescue of calbindin-D28k-immunoreactive cells. Therefore, our results suggest that GDNF prevents ethanol-associated Purkinje cell loss. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 835–847, 1997  相似文献   

15.
Simian virus 40 tumor (T) antigen, an established viral oncoprotein, causes alterations in cell growth control through interacting with, and altering the function of, cellular proteins. To examine the effects of T antigen on cell growth control, and to identify the cellular proteins with which it may functionally interact, T antigen was expressed in the budding yeast Saccharomyces cerevisiae. The yeast cells expressing T antigen showed morphological alterations as well as growth inhibition attributable, at least in part, to a lag in progression from G1 to S. This point in the cell cycle is also known to be affected by T antigen in mammalian cells. Both p34CDC28 and p34CDC2Hs were shown to bind to a chimeric T antigen-glutathione S-transferase fusion protein, indicating that T antigen interacts directly with cell cycle proteins which control the G1 to S transition. This interaction was confirmed by in vivo cross-linking experiments, in which T antigen and p34CDC28 were coimmunoprecipitated from extracts of T-antigen-expressing yeast cells. These immunoprecipitated complexes could phosphorylate histone H1, indicating that kinase activity was retained. In addition, in autophosphorylation reactions, the complexes phosphorylated a novel 60-kDa protein which appeared to be underphosphorylated (or underrepresented) in p34CDC28-containing complexes from cells which did not express T antigen. These results suggest that T antigen interacts with p34CDC28 and alters the kinase function of p34CDC28-containing complexes. These events correlate with alterations in the yeast cell cycle at the G1 to S transition.  相似文献   

16.
Yang YT  Whiteman M  Gieseg SP 《Life sciences》2012,90(17-18):682-688
AimsMacrophages must function in an inflammatory environment of high oxidative stress due to the production of various oxidants. Hypochlorous acid (HOCl) is a potent cytotoxic agent generated by neutrophils and macrophages within inflammatory sites. This study determines whether glutathione is the key factors governing macrophage resistance to HOCl.Main methodsHuman monocyte derived macrophages (HMDM) were differentiated from human monocytes prepared from human blood. The HMDM cells were exposed to micromolar concentrations of HOCl and the timing of the cell viability loss was measured. Cellular oxidative damage was measured by loss of glutathione, cellular ATP, tyrosine oxidation, and inactivation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH).Key findingsHOCl causes a rapid loss in HMDM cell viability above threshold concentrations. The cell death occurred within 10 min of treatment with the morphological characteristics of necrosis. The HOCl caused the extensive cellular protein oxidation with the loss of tyrosine residue and inactivation of GAPDH, which was accompanied with the loss of cellular ATP. This cellular damage was only observed after the loss of intracellular GSH from the cell. Removal of intracellular GSH with diethyl maleate (DEM) increased the cells' sensitivity to HOCl damage while protecting the intracellular GSH pool with the antioxidant 7,8-dihydroneopterin prevented the HOCl mediated viability loss. Variations in the HOCl LD50 for inducing cell death were strongly correlated with initial intracellular GSH levels.SignificanceIn HMDM cells scavenging of HOCl by intracellular glutathione is sufficient to protect against oxidative loss of key metabolic functions within the cells.  相似文献   

17.
MAZ51 is an indolinone-based molecule originally synthesized as a selective inhibitor of vascular endothelial growth factor receptor (VEGFR)-3 tyrosine kinase. This study shows that exposure of two glioma cell lines, rat C6 and human U251MG, to MAZ51 caused dramatic shape changes, including the retraction of cellular protrusions and cell rounding. These changes were caused by the clustering and aggregation of actin filaments and microtubules. MAZ51 also induced G2/M phase cell cycle arrest. This led to an inhibition of cellular proliferation, without triggering significant cell death. These alterations induced by MAZ51 occurred with similar dose- and time-dependent patterns. Treatment of glioma cells with MAZ51 resulted in increased levels of phosphorylated GSK3β through the activation of Akt, as well as increased levels of active RhoA. Interestingly, MAZ51 did not affect the morphology and cell cycle patterns of rat primary cortical astrocytes, suggesting it selectively targeted transformed cells. Immunoprecipitation–western blot analyses indicated that MAZ51 did not decrease, but rather increased, tyrosine phosphorylation of VEGFR-3. To confirm this unanticipated result, several additional experiments were conducted. Enhancing VEGFR-3 phosphorylation by treatment of glioma cells with VEGF-C affected neither cytoskeleton arrangements nor cell cycle patterns. In addition, the knockdown of VEGFR-3 in glioma cells did not cause morphological or cytoskeletal alterations. Furthermore, treatment of VEGFR-3-silenced cells with MAZ51 caused the same alterations of cell shape and cytoskeletal arrangements as that observed in control cells. These data indicate that MAZ51 causes cytoskeletal alterations and G2/M cell cycle arrest in glioma cells. These effects are mediated through phosphorylation of Akt/GSK3β and activation of RhoA. The anti-proliferative activity of MAZ51 does not require the inhibition of VEGFR-3 phosphorylation, suggesting that it is a potential candidate for further clinical investigation for treatment of gliomas, although the precise mechanism(s) underlying its effects remain to be determined.  相似文献   

18.
Urothelial cell carcinoma (UCC) is the second most common genitourinary malignant disease in the USA, and tobacco smoking is the major known risk factor for UCC development. Exposure to carcinogens, such as those contained in tobacco smoke, is known to directly or indirectly damage DNA, causing mutations, chromosomal deletion events and epigenetic alterations in UCC. Molecular studies have shown that chromosome 9 alterations and P53, RAS, RB and PTEN mutations are among the most frequent events in UCC. Recent studies suggested that continuous tobacco carcinogen exposure drives and enhances the selection of epigenetically altered cells in UCC, predominantly in the invasive form of the disease. However, the sequence of molecular events that leads to UCC after exposure to tobacco smoke is not well understood.

To elucidate molecular events that lead to UCC oncogenesis and progression after tobacco exposure, we developed an in vitro cellular model for smoking-induced UCC. SV-40 immortalized normal HUC1 human bladder epithelial cells were continuously exposed to 0.1% cigarette smoke extract (CSE) until transformation occurred. Morphological alterations and increased cell proliferation of non-malignant urothelial cells were observed after 4 months (mo) of treatment with CSE. Anchorage-independent growth assessed by soft agar assay and increase in the migratory and invasive potential was observed in urothelial cells after 6 mo of CSE treatment. By performing a PCR mRNA expression array specific to the PI3K-AKT pathway, we found that 26 genes were upregulated and 22 genes were downregulated after 6 mo of CSE exposure of HUC1 cells. Among the altered genes, PTEN, FOXO1, MAPK1 and PDK1 were downregulated in the transformed cells, while AKT1, AKT2, HRAS, RAC1 were upregulated. Validation by RT-PCR and western blot analysis was then performed. Furthermore, genome-wide methylation analysis revealed MCAM, DCC and HIC1 are hypermethylated in CSE-treated urothelial cells when compared with non-CSE exposed cells. The methylation status of these genes was validated using quantitative methylation-specific PCR (QMSP), confirming an increase in methylation of CSE-treated urothelial cells compared to untreated controls. Therefore, our findings suggest that a tobacco signature could emerge from distinctive patterns of genetic and epigenetic alterations and can be identified using an in vitro cellular model for the development of smoking-induced cancer.  相似文献   

19.
Sodium butyrate (NaBu) can enhance the expression of genes controlled by some of the mammalian promoters, but it can also inhibit cell growth and induce cellular apoptosis. Thus, the beneficial effect of using a higher concentration of NaBu on a foreign protein expression is compromised by its cytotoxic effect on cell growth. To overcome this cytotoxic effect of NaBu, the expression vector of antisense RNA of caspase-3 was constructed and transfected to recombinant Chinese hamster ovary (rCHO) cells producing a humanized antibody. Using this antisense RNA strategy, rCHO cells (B3) producing a low level of caspase-3 proenzyme were established. When batch cultures of both B3 cells and control cells transfected with antisense RNA-deficient plasmid were performed in the absence of NaBu, both cells showed similar profiles of cell growth and antibody production. Compared with control cell culture, under the condition of 5 mM NaBu addition at the exponential growth phase, expression of antisense RNA of caspase-3 significantly suppressed the NaBu-induced apoptosis of B3 cells and extended culture longevity by >2 days if the culture was terminated at cell viability of 50%. However, compared with control cell culture, the final antibody concentration of B3 cell culture was not increased in the presence of NaBu, which may be due to the loss of cellular metabolic capability resulted from the depolarization of mitochondrial membrane. Taken together, this study suggests that, although expression of antisense RNA of caspase-3 does not improve antibody productivity of rCHO cells, it can suppress NaBu-induced apoptotic cell death of rCHO cells and thereby may reduce problems associated with cellular disintegration.  相似文献   

20.
Macrophages continuously exposed to lymphokines (LK) and target cells throughout a 48-hr cytotoxicity assay exhibit 3-fold more tumoricidal activity than do cells optimally treated with LK before addition of tumor cells. Increased cytotoxic activity induced by continuous LK treatment was not due to direct toxic effects of LK on tumor target cells or to alterations in target cell susceptibility to cytopathic effects of LK-activated macrophages. Moreover, sensitivities of responsive macrophages to LK activation signals and time courses for onset and loss of tumoricidal activity during continuous exposure or LK pulse were identical. Analysis of macrophage or LK dose responses and time courses for development of cytotoxicity each suggest that differences in tumoricidal activity between macrophages continuously exposed or pulsed with LK were quantitative: the number of cytotoxic events was increased 2.7 ± 0.2-fold (mean ± SEM for 11 experiments) during continuous LK treatment. Optimal levels of macrophage tumoricidal activity then occur only if effector cells, target cells and activation stimuli are simultaneously present for a defined time interval: tumor cells need not be present during the initial 2 to 3 hr of culture; LK can be removed after 8 hr with little or no loss of cytotoxic activity. However, removal of LK or target cells during the critical 4- to 8-hr interval decreased levels of cytotoxicity 3-fold. Thus, nonspecific effector function by LK-activated macrophages in controlled by both the physicochemical nature of the LK mediator and the time interval effector and target cells are exposed to LK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号