首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tubulin-colchicine binding reaction appears to involve a number of intermediate steps beginning with rapid formation of a transient preequilibrium complex that is followed by one or more slow steps in which conformational changes in tubulin and colchicine lead to formation of a poorly reversible final-state complex. In the present study, we investigated the relative ability of unliganded colchicine and preformed final-stage tubulin-colchicine complex to incorporate at microtubule ends and to inhibit addition of tubulin at the net assembly ends of bovine brain microtubules in vitro. Addition of 0.1 microM final-stage tubulin-colchicine complex to suspensions of microtubules at polymer-mass steady-state resulted in rapid incorporation of one to two molecules of tubulin-colchicine complex per microtubule net assembly end concomitant with approximately 50-60% inhibition of tubulin addition. Incorporation of colchicine-tubulin complex continued slowly with time, without significant additional change in the rate of tubulin addition. In contrast, addition of unliganded colchicine to microtubule suspensions resulted in incorporation of small numbers of colchicine molecules at microtubule ends and inhibition of tubulin addition only after periods of time that varied from several minutes to approximately 20 min depending upon the concentration of colchicine. Inhibition of tubulin addition beginning with unliganded colchicine increased slowly with time, concomitant with increases in the concentration of final-state tubulin-colchicine complex and the amount of colchicine bound per microtubule end. The results indicate that inhibition of tubulin incorporation at microtubule ends is caused by colchicine-liganded tubulin in the form of a final-state complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The interaction of tubulin-microtubule poison complexes with anti-tubulin antisera has been investigated using radioimmunoassay. The binding of the major antiserum used in this study to tubulin does not interfere with the binding of colchicine to the tubulin or affect the decay of the colchicine-binding activity of the tubulin. Conversely, if colchicine is incubated with the tubulin, forming tubulin-colchicine complexes, the tubulin-colchicine complexes are less efficient competitors for antibody-binding sites than tubulin alone. This is the result of the formation of specific colchicine-tubulin complexes, since tubulin, incubated with lumicolchicine or isocolchicine, behaves as if the tubulin were incubated alone in the radioimmunoassay. When tubulin is incubated with other microtubule poisons, podophyllotoxin or vinblastine, the tubulin-drug complexes have diminished ability to compete with tubulin as did the tubulin-colchicine complexes. These changes observed in the binding of tubulin-microtubule poison complexes to anti-tubulin antisera in a tubulin radioimmunoassay suggest that the binding of colchicine, podophyllotoxin, or vinblastine to tubulin induces subtle conformational changes on the surface of the tubulin dimer involving antigenic determinant sites.  相似文献   

3.
Brain tubulin was labeled in vitro by post-translational incorporation of [14C]-tyrosine or in vivo by intra-cranial injection of [3H]-leucine. The labeled protein was purified by ion-exchange chromatography. After incubating at 37 degrees C with a microsomal membrane preparation from rat brain, part of the labeled soluble tubulin became sedimentable at high-speed centrifugation. This was independent of the native configuration of tubulin, the state of tyrosination of the COOH-terminus, or the presence of 100 microM colchicine in the mixture. In addition, the double-labeled tubulin-colchicine complex obtained from the binding of [3H]-colchicine to [14C]-tyrosinated tubulin, bound to the membrane preparation to the same extent as [14C]-tyrosinated tubulin. The data show that either tubulin or the complex resulting from its binding to colchicine distributed between the soluble and the membrane fractions when mixed at 37 degrees C with a microsome preparation. Seemingly, the site for colchicine binding to tubulin needs not to be free for the protein-membrane association.  相似文献   

4.
The inhibition of the polymerization of tubulin from cultured cells of rose (Rosa. sp. cv. Paul's scarlet) by colchicine and the binding of colchicine to tubulin were examined in vitro and compared with data obtained in parallel experiments with bovine brain tubulin. Turbidimetric measurements of taxol-induced polymerization of rose microtubules were found to be sensitive and semiquantitative at low tubulin concentrations, and to conform to some of the characteristics of a nucleation and condensation-polymerization mechanism for assembly of filamentous helical polymers. Colchicine inhibited the rapid phase of polymerization at 24°C with an apparent inhibition constant (K i) of 1.4·10-4 M for rose tubulin and an apparent K i=8.8·10-7 M for brain tubulin. The binding of [3H]colchicine to rose tubulin to form tubulin-colchicine complex was mildly temperature-dependent and slow, taking 2–3 h to reach equilibrium at 24°C, and was not affected by vinblastine sulfate. The binding of [3H]colchicine to rose tubulin was saturable and Scatchard analysis indicated a single class of low-affinity binding sites having an apparent affinity constant (K) of 9.7·102 M-1 and an estimated molar binding stoichiometry (r) of 0.47 at 24°C. The values for brain tubulin were K=2.46·106 M-1 and r=0.45 at 37°C. The binding of [3H]colchicine to rose tubulin was inhibited by excess unlabeled colchicine, but not by podophyllotoxin or tropolone. The data demonstrate divergence of the colchicine-binding sites on plant and animal tubulins and indicate that the relative resistance of plant microtubule polymerization to colchicine results from a low-affinity interaction of colchicine and tubulin.Abbreviations MT microtubule - TC tubulin-colchicine complex  相似文献   

5.
J Wolff  J Hwang  D L Sackett  L Knipling 《Biochemistry》1992,31(16):3935-3940
Pure rat brain tubulin can be cross-linked by ultraviolet irradiation of tubulin-colchicine complexes at the high-wavelength maximum of colchicine to form covalent dimers greater than trimers greater than tetramers. With colchicine concentrations approximately 3 x 10(-4) M (mole ratio to tubulin 3-12) and irradiation for 5-10 min at 95-109 mW/cm2, the yield of dimers is 11-17% and of trimers is 4-6% of the total tubulin. The oligomers show polydispersity and anomalously high apparent molecular masses that converge toward expected values in low-density gels. Maximal dimer yields are obtained with MTC and the decreasing photosensitizing potency is MTC greater than colchicine greater than colchicide greater than isocolchicine greater than thiocolchicine. Single-ring troponoids also promote dimerization. Evidence is presented suggesting that the initial, low-affinity, binding step of colchicine and its analogues is sufficient to photosensitize tubulin dimerization.  相似文献   

6.
D Saltarelli  D Pantaloni 《Biochemistry》1983,22(19):4607-4614
We have shown previously [Saltarelli, D., & Pantaloni, D. (1982) Biochemistry 21, 2996-3006] that the tubulin-colchicine complex is able to polymerize in vitro into peculiar "curly" polymers, under the solution conditions permitting polymerization of unliganded tubulin into microtubules. Here it is further demonstrated that unliganded tubulin can be incorporated into these "curly" polymers. The partial critical concentration of tubulin-colchicine is decreased upon incorporation of unliganded tubulin into the copolymer. GTP hydrolysis occurs on unliganded tubulin upon incorporation in the copolymer. Tubulin-podophyllotoxin does not copolymerize with tubulin-colchicine to form a large polymer but interacts with it, preventing tubulin-colchicine polymerization. The data have been analyzed within a model of random copolymerization of unliganded tubulin and tubulin-colchicine into "curly" polymers. A corollary is that unliganded tubulin is virtually able to self-assemble into curly polymers with a critical concentration 10-fold higher than the critical concentration found for microtubule assembly. Consequently, these peculiar tubulin homopolymers cannot be observed except as transients at high concentrations, or when microtubule assembly is inhibited. Kinetic measurements of the T-TC copolymerization process and associated GTP hydrolysis at different T/TC ratios provide supplementary information about some privileged interactions between tubulin and tubulin-colchicine molecules. A comprehensive phase diagram of the various possible polymers formed in the presence of tubulin and tubulin-colchicine is presented.  相似文献   

7.
The effect of colchicine and its analogues, allocolchicine, 2,3,4-trimethoxy-4'-carbomethoxy-1,1'biphenyl, 2,3,4,4'-tetramethoxy-1,1'-biphenyl, 2,3,4-trimethoxy-4'-acetyl-1,1'-biphenyl, and tropolone methyl ether, on the aging process of tubulin has been examined. In contrast to the vinca alkaloid drugs which accelerate the formation of the paucidisperse 9 S polymers by a factor of 3.5, the colchicine class of ligands stabilize alpha,beta-tubulin. Less than 10% of the protein is transformed into the aggregates after 50 h of incubation in the presence of 1 x 10(-3) M colchicine, as compared to nearly 70-75% transformation in its absence. These results are supported by fluorescence examination of the retention of colchicine binding ability, as well as circular dichroism spectroscopy. In the presence of colchicine, the rate determining step is a conformational change, just as in its absence. The colchicine analogues which bind to tubulin in a rapidly reversible equilibrium were almost as effective in tubulin stabilization. Addition of vincristine to the system reduced the stability of the tubulin-colchicine complex. Furthermore, vincristine was found to have the same effects on the fresh complex as it does on pure tubulin; i.e., it induced the isodesmic linear polymerization and inhibited assembly into the microtubule-mimicking large polymers. This inhibition, however, was stoichiometric, whereas it is substoichiometric in the case of microtubules.  相似文献   

8.
Human placental receptors for luteinizing hormone releasing hormone   总被引:2,自引:0,他引:2  
The GTPase activity of the tubulin-colchicine complex has been studied at different tubulin-colchicine concentrations. The specific activity was found to decrease at low concentrations. Several hypothesis accounting for this observation have been discarded, and the activation via collisions between two molecules of tubulin has been considered as a possible model explaining the origin and observed concentration dependence of the GTPase activity. The activation of tubulin-colchicine by unliganded tubulin or tubulin-podophyllotoxin has been investigated within this model which emphasizes the connection between some specific tubulin-tubulin interactions and the conformation of the exchangeable nucleotide site on tubulin.  相似文献   

9.
The effects of colchicine and tubulin-colchicine complex (TC) on microtubule depolymerization were studied using the axoneme-subunit system described previously [Bergen LG, Borisy GG; J Cell Biol 84:141-150, 1980]. This system allows the independent analysis of the polymerization kinetics at both the plus and minus ends of a microtubule. Depolymerization was induced by isothermal dilution with 10 volumes of an experimental solution containing colchicine, TC, or buffer alone. Colchicine alone (5-100 microM) blocked depolymerization at the minus end, whereas depolymerization at the plus end occurred at almost control rates. A similar effect was produced by TC (0.4:1-1:1 molar ratio to free tubulin). High molar ratios of TC to tubulin (10:1) blocked depolymerization at both plus and minus ends, and intermediate molar ratios of TC:T allowed depolymerization of the plus ends but at attenuated rates. The blockage was not readily reversible; TC-affected ends neither shortened upon dilution nor grew longer upon incubation with additional tubulin. We conclude that TC at suprastoichiometric ratios to tubulin inhibits microtubule depolymerization by a capping reaction and that this effect is exerted preferentially at the minus end.  相似文献   

10.
9-(Dicyanovinyl) julolidine (DCVJ) is a fluorescent probe, which binds to a unique site on the tubulin dimer and exhibits different properties that are dependent upon its oligomeric state (Kung & Reed, 1989). DCVJ binds to tubulin, the tubulin-colchicine complex, and the tubulin-ruthenium red complex equally well, but binds tighter to the ANS-tubulin complex than to tubulin alone. The energy transfer studies indicate a small amount of energy transfer with colchicine, but a significant energy transfer with ANS. It was shown previously that ruthenium red binds near the C-terminal tail region of the alpha-subunit. Ruthenium red causes major quenching of fluorescence of the tubulin-DCVJ complex, suggesting proximity of binding sites. The derived distances are consistent with DCVJ binding near the alpha beta interface, but on the opposite face of the colchicine binding site. Location of the binding site correlates with the observed effect of a different polymerized state of tubulin on the DCVJ spectroscopic properties. The effect of dimer-dimer association on DCVJ binding, at high protein concentrations (Kung & Reed, 1989), suggests that such an association may occur through lateral contacts of the elongated tubulin dimer, at least in a significant fraction of the cases. Transmission of ANS-induced conformational change to the DCVJ binding site, which is near important dimer-dimer contact sites, makes it possible that such conformational changes may be responsible for polymerization inhibition by anilino-naphthalene sulfonates.  相似文献   

11.
The interaction of tubulin with simple analogues of colchicine that contain both its tropolone and trimethoxyphenyl rings has been characterized, and the results were analyzed in terms of the simple bifunctional ligand model developed for the binding of colchicine [ Andreu , J. M., & Timasheff , S. N. (1982) Biochemistry 21, 534-543] on the basis of interactions of tubulin with single-ring analogues. The compound 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6- cycloheptatrien -1-one has been found to bind reversibly to 0.86 +/- 0.06 site of purified calf brain tubulin with an equilibrium constant of (4.9 +/- 0.3) X 10(5) M-1 (25 degrees C), delta H degrees app = -1.6 +/- 0.7 kcal mol-1, and delta S degrees app = 20.5 +/- 2.5 eu. The binding appears specific for the colchicine site. The closely related compound 2-methoxy-5-[[3-(3,4,5-trimethoxyphenyl)-propionyl]amino] -2,4,6- cycloheptatrien -1-one interacts weakly with tubulin. Binding of the first analogue is accompanied by ligand fluorescence appearance, quenching of protein fluorescence, perturbation of the far-ultraviolet circular dichroism of tubulin, and induction of the tubulin GTPase activity, similarly to colchicine binding. Substoichiometric concentrations of the analogue inhibit microtubule assembly in vitro. Excess analogue concentration under microtubule-promoting conditions induces an abnormal cooperative polymerization of tubulin, similar to that of the tubulin-colchicine complex.  相似文献   

12.
The structural change induced by binding of mild detergents to cytoplasmic calf brain tubulin and the effects on the functional properties of this protein have been characterized. Massive binding of octyl glucoside or deoxycholate monomers induces circular dichroism changes indicating a partial alpha-helix to disordered structure transition of tubulin. The protein also becomes more accessible to controlled proteolysis by trypsin, thermolysin, or V8 protease. This is consistent with the looser protein structure proposed in previous binding and hydrodynamic studies [Andreu, J. M., & Mu?oz, J. A. (1986) Biochemistry (preceding paper in this issue)]. Micelles of octyl glucoside and deoxycholate bind colchicine and its analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC). This impedes the determination of colchicine binding in the presence of detergents. Both detergents cause a reduction in the number of tubulin equilibrium binding sites for the colchicine site probe MTC. Deoxycholate monomers bind poorly to the tubulin-colchicine complex, but deoxycholate above the critical micelle concentration effectively dissociates the complex. Microtubule assembly in glycerol-containing buffer is inhibited by octyl glucoside, which raises the critical protein concentration. Low concentrations of deoxycholate enhance tubulin polymerization, allowing it to proceed without glycerol. The polymers formed are microtubules, pairwise associated open microtubular sheets, and macrotubules possibly generated by helical folding of the sheets, as indicated by the optical diffraction patterns. Saturation of tubulin with octyl glucoside, followed by full dissociation of the detergent, allowed the recovery of binding to the colchicine site and microtubule assembly, indicating the reversibility of the protein structural change.  相似文献   

13.
Wang C  Cormier A  Gigant B  Knossow M 《Biochemistry》2007,46(37):10595-10602
Microtubules are dynamically unstable tubulin polymers that interconvert stochastically between growing and shrinking states, a property central to their cellular functions. Following its incorporation in microtubules, tubulin hydrolyzes one GTP molecule. Microtubule dynamic instability depends on GTP hydrolysis so that this activity is crucial to the regulation of microtubule assembly. Tubulin also has a much lower GTPase activity in solution. We have used ternary complexes made of two tubulin molecules and one stathmin-like domain to investigate the mechanism of the tubulin GTPase activity in solution. We show that whereas stathmin-like domains and colchicine enhance this activity, it is inhibited by vinblastine and by the N-terminal part of stathmin-like domains. Taken together with the structures of the tubulin-colchicine-stathmin-like domain-vinblastine complex and of microtubules, our results lead to the conclusions that the tubulin-colchicine GTPase activity in solution is caused by tubulin-tubulin associations and that the residues involved in catalysis comprise the beta tubulin GTP binding site and alpha tubulin residues that participate in intermolecular interactions in protofilaments. This site resembles the one that has been proposed to give rise to GTP hydrolysis in microtubules. The widely different hydrolysis rates in these two sites result at least in part from the curved and straight tubulin assemblies in solution and in microtubules, respectively.  相似文献   

14.
The interactions of tubulin with colchicine analogues in which the tropolone methyl ether ring had been transformed into a p-carbomethoxybenzene have been characterized. The analogues were allocolchicine (ALLO) and 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB), the first being transformed colchicine and the second transformed colchicine with ring B eliminated. The binding of both analogues has been shown to be specific for the colchicine binding site on tubulin by competition with colchicine and podophyllotoxin. Both analogues bind reversibly to tubulin with the generation of ligand fluorescence. The binding of ALLO is slow, the fluorescence reaching a steady state in the same time span as colchicine; that of TCB is rapid. The displacement of ALLO by podophyllotoxin proceeds with a half-life of ca. 40 min. Binding isotherms generated from gel filtration and fluorescence measurements have shown that both analogues bind to tubulin with a stoichiometry of 1 mol of analogue/mol of alpha-beta tubulin. The equilibrium binding constants at 25 degrees C have been found to be (9.2 +/- 2.5) x 10(5) M-1 for ALLO and (1.0 +/- 0.2) X 10(5) M-1 for TCB. Binding of both analogues was accompanied by quenching of protein fluorescence, perturbation of the far-ultraviolet circular dichroism of tubulin, and induction of the tubulin GTPase activity, similarly to colchicine binding. Both inhibited microtubule assembly in vitro, ALLO substoichiometrically, and both induced the abnormal cooperative polymerization of tubulin, which is characteristic of the tubulin-colchicine complex. Analysis in terms of the simple bifunctional ligand binding mechanism developed for colchicine [Andreu, J.M., & Timasheff, S.N. (1982) Biochemistry 21, 534-543] and comparison with the binding of the colchicine two-ring analogue, 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one [Andreu, J. M., Gorbunoff, M. J., Lee, J. C., & Timasheff, S. N. (1984) Biochemistry 23, 1742-1752], have shown that transformation of the tropolone methyl ether part of colchicine into p-carbomethoxybenzene weakens the standard free energy of binding to tubulin by 1.4 +/- 0.1 kcal/mol, while elimination of ring B weakens it by 1.0 +/- 0.1 kcal/mol. The roles of rings C and B of colchicine in the thermodynamic and kinetic mechanisms of binding to tubulin were analyzed in terms of these findings.  相似文献   

15.
EPR titration of tubulin with an allocolchicine spin probe showed more than one binding site: one high-affinity binding site (Kd = 8 microM), consistent with the Ki found for competition with colchicine, and one or more low-affinity site(s) (Kd higher than 50 microM). No disturbance of the EPR signal of the tubulin-bound allocolchicine spin probe could be observed at room temperature in the presence of other paramagnetic probes: Mn(II) for the binding site of Mg(II), Co(II) for the Zn(II) binding site and Cr(III)GTP for the binding site of the exchangeable GTP. Labelling of tubulin with both the allocolchicine and a SH-group spin probe also showed lack of interaction. The colchicine-binding site is thus sterically isolated from the binding sites for GTP, Mg(II), Zn(II) and the two essential SH-groups. In the tubulin-colchicin complex, all SH-groups could still be labelled with an excess of the SH-reagent, N-ethylmaleimide. Furthermore, colchicine binding was only minimally influenced by the blocking of the two essential SH-groups. However, the rate constant of the reaction of two equivalents of the SH-reagent, a maleimide spin probe, with the tubulin-colchicine complex was only 50% of the rate constant found with uncomplexed tubulin. As direct steric interaction of the essential SH-groups with the colchicine-binding site can be excluded, we can now definitively decide that binding of colchicine to tubulin induces a conformational change, which affects the accessibility of the most reactive SH-groups.  相似文献   

16.
L D Ward  S N Timasheff 《Biochemistry》1988,27(5):1508-1514
The high-affinity metal divalent cation Mg2+, associated with the exchangeable guanosine 5'-triphosphate (GTP) binding site (E site) on purified tubulin, has been replaced by the transition metal ion Co2+ on tubulin as well as on the tubulin-colchicine, tubulin-allocolchicine and tubulin-8-anilino-1-naphthalenesulfonic acid (tubulin-ANS) complexes. While pure native tubulin readily incorporated 0.8 atom of Co2+ per tubulin alpha-beta dimer, incorporation was reduced to 0.4 atom of Co2+ per mole of tubulin when it was complexed with colchicine, indicating that the conformational change induced in tubulin by the binding of colchicine leads to a reduced accessibility of the divalent cation binding site linked to the E site without necessarily changing the intrinsic binding constant. The fluorescence emission spectra of tubulin-bound colchicine, allocolchicine, and ANS displayed a strong overlap with the Co2+ absorption spectrum, identifying these as adequate donor-acceptor pairs. Fluorescence energy-transfer measurements were carried out between tubulin-bound colchicine (or allocolchicine) and ANS as donors and tubulin-complexed Co2+ as acceptor. It was found that the distance between the ANS and the high-affinity divalent cation binding sites is greater than 28 A, while that between the colchicine and the divalent cation binding sites is greater than 24 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Summary The primary leaf, epicotyl, and root cells ofVigna sinensis seedlings grown continuously in a 0.08% colchicine solution, become microtubule-free and polyploid. In meristematic root cells a tubulin transformation is detected 1–3 h after the treatment had begun. Tubulin strands are organized at the positions of the pre-existing microtubules. Frequently, the strands converge on or are organized in the cortical cytoplasmic zone where in normal cells the preprophase microtubule band (PMB) is assembled. In meristematic root cells subjected to a 6–12 h colchicine treatment, the tubulin strands become perinuclear, entering the cortical cytoplasm at regions close to the nucleus. One day after the onset of the treatment, tubulin generally forms a continuous reticulum of interconnected strands in all the organs examined. In most cells this reticulum surrounds the nucleus partly or totally or lies close to it, exhibiting variable configurations in different cells. After prolonged treatments, the organization of the tubulin reticulum changes further. Now this consists of crystal-like structures interconnected by thin strands.On thin sections of fixed tissue the tubulin strands consist of paracrystalline material. The distribution of this material in the affected cells coincides with that of tubulin reticulum visualized by immunofluorescence. In transverse planes each strand exhibits circular subunits arranged close to one another in a hexagonal pattern but in longitudinal ones variable images were observed. The paracrystalline material persists in root cells subjected to an 8-day continuous colchicine treatment. The immunolabeled strands seem to be composed of tubulin-colchicine complexes and not pure tubulin.  相似文献   

18.
A comparative study has been carried out of the effects of taxol on the polymerizations into microtubules of microtubule-associated protein-free tubulin, prepared by the modified Weisenberg procedure, and of the tubulin-colchicine complex into large aggregates. Taxol enhances, to a much greater extent, the stability of microtubules than that of the tubulin-colchicine polymers so that, with highly purified tubulin, assembly into microtubules takes place at 10 degrees C, even in the absence of exogenous GTP. The polymerization of tubulin-colchicine requires both heat and GTP, and the process is reversed by cooling. These results indicate that in both systems polymerization is linked to interactions with taxol and GTP, the interplay of linkage free energies imparting the observed polymer stabilities. In the case of microtubule formation, the linkage free energy provided by taxol binding is approximately -3.0 kcal/mol of alpha-beta-tubulin dimer, whereas this quantity is reduced to approximately -0.5 kcal/mol in tubulin-colchicine, indicating the expenditure of much more binding free energy in the latter case for overcoming unfavorable factors, such as steric hindrance and geometric strain. The difference in the effect of GTP on the two polymerization processes reflects the respective abilities of the bindings of taxol to the two states of tubulin to overcome the loss of the linkage free energy of GTP binding. Analysis of the linkages leads to the conclusions that taxol need not change qualitatively the mechanism of microtubule assembly and that tubulin with the E-site unoccupied by nucleotide should have the capacity to form microtubules, the reaction being extremely weak.  相似文献   

19.
A method is described for measuring the quantities of stable and dynamic microtubules in a population in vitro. The method exploits the tendency of dynamic microtubules to depolymerize rapidly after being sheared. Stable microtubules, such as those protected by microtubule-associated proteins (MAPs), are broken to a smaller size by shearing, but do not depolymerize into subunits. The usual difficulty with this procedure is that the tubulin released from the dynamic microtubules rapidly repolymerizes before the end point of depolymerization can be measured. This has been overcome by including a small quantity of tubulin-colchicine complex in the mixture to block the repolymerization. For a total of 24 microM tubulin in a polymerization mixture, 10 microM of the sample polymerized originally under the conditions used. When 1.05 microM tubulin-colchicine complex was added at the time of shearing, the dynamic microtubules depolymerized, but the tubulin was released was unable to repolymerize and a small fraction of stable microtubules that resisted shear-induced depolymerization could then be detected. When traces of MAPs (0.23-2.8% by mass) were included in the tubulin mixture, the fraction of stable microtubules increased from 5% in the absence of added MAPs to 41% in the presence of 2.8% MAPs. All the MAPs in the mixture were found in the stable fraction and this stable fraction forms early during microtubule assembly. Calculations on the extent of enrichment of MAPs in the stable fraction indicated that as little as 4% MAPs in a microtubule protected it from shear-induced disassembly. The results suggest that low levels of MAPs may distribute nonrandomly in the microtubule population.  相似文献   

20.
The new fluorophor for tubulin, DAPI, is shown to bind to a site different from the exchangeable nucleotide binding site (E site) and to inhibit GTP hydrolysis by the tubulin-colchicine complex within an uncompetitive scheme. Moreover the dissociation rate constant of tubulin for microtubule ends at 32 degrees C was found largely decreased in the presence of saturating amounts of the probe while the association rate constant was little affected. These data on the kinetic parameters of tubulin interactions in the presence of DAPI, together with the inhibition of GTP hydrolysis by microtubules at the steady state are understood as the main cause for microtubule stabilization at steady-state by DAPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号