首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究旨在构建表达小反刍兽疫H蛋白的重组山羊痘病毒,并评价其免疫效力。利用筛选基因gpt和eGFP并结合空斑技术,纯化筛选了重组小反刍兽疫H基因的重组山羊痘病毒(rGPV-PPRV-H),经过PCR鉴定重组病毒已纯化。免疫荧光和蛋白印迹都表明重组病毒能够感染绵羊羔羊睾丸细胞表达小反刍兽疫H蛋白。以2×106PFU的rGPV-PPRV-H皮内注射免疫山羊6只,并于首次免疫后28d以相同剂量进行二次免疫。免疫后采血分离血清进行病毒中和试验,结果表明,一次免疫后21d,山羊痘病毒中和抗体效价依次为40、80、≥80、≥80、40、≥80,和小反刍兽疫病毒中和抗体效价全部转阳依次为80、80、80、80、40、40、10;二次免疫后14d,山羊痘病毒中和抗体效价抗体全部大于或等于80,小反刍兽疫病毒中和抗体效价依次为≥80、80、≥80、80、80、40,应该具有对山羊痘病毒和小反刍兽疫病毒强毒攻击的完全免疫保护作用。本研究为小反刍兽疫重组山羊痘疫苗的产业化提供了参考。  相似文献   

2.
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants caused by the Morbillivirus peste des petits ruminants virus (PPRV). Two recombinant replication-defective human adenoviruses serotype 5 (Ad5) expressing either the highly immunogenic fusion protein (F) or hemagglutinin protein (H) from PPRV were used to vaccinate sheep by intramuscular inoculation. Both recombinant adenovirus vaccines elicited PPRV-specific B- and T-cell responses. Thus, neutralizing antibodies were detected in sera from immunized sheep. In addition, we detected a significant antigen specific T-cell response in vaccinated sheep against two different PPRV strains, indicating that the vaccine induced heterologous T cell responses. Importantly, no clinical signs and undetectable virus shedding were observed after virulent PPRV challenge in vaccinated sheep. These vaccines also overcame the T cell immunosuppression induced by PPRV in control animals. The results indicate that these adenovirus constructs could be a promising alternative to current vaccine strategies for the development of PPRV DIVA vaccines.  相似文献   

3.
目的截短表达小反刍兽疫病毒M蛋白基因并将其用于多抗血清的制备。方法之前有研究未能表达完整的M蛋白,而若在抗原性较弱的区域将其一分为二,以截短的形式进行表达,却能达到较理想的水平。因此根据GenBank上公布的PPRV M基因的序列,设计1对特异性引物,扩增出480bp的目的基因,将其克隆至原核表达载体pET-32a(+)中,得到重组表达质粒pET-32a-PPRV-M1,后转化至Rosetta感受态细胞中,IPTG诱导表达后,通过SDS-PAGE和Western blot试验对重组蛋白进行鉴定,将纯化后的重组蛋白免疫6周龄BALB/c雌鼠,制备多克隆抗体血清。结果经SDS-PAGE及Western blot鉴定,证明截短的M基因的蛋白主要以包涵体形式高效表达并具有良好的反应原性。结论成功克隆表达了截短的小反刍兽疫病毒M基因的蛋白并制备了多抗血清,为建立血清学相关的检测方法及临床治疗奠定了基础。  相似文献   

4.
干扰素具有广谱抗病毒、抗肿瘤活性,可增强机体抗病毒能力,已经广泛应用于病毒性疾病的防控.小反刍兽疫病毒是危害山羊、绵羊等小反刍动物常见的病毒之一,该病毒的传播对全球养殖业造成了严重的影响.为了表达具有高效抗病毒活性的羊α干扰素(OviIFN-α),将OviIFN-α基因序列根据家蚕密码子偏好性进行优化合成,构建pVL1...  相似文献   

5.
A sensitive and rapid single step real time (rt) RT-PCR was standardized using one-step Brilliant SYBR Green kit for detection and semi-quantitation of peste des petitis ruminants virus (PPRV) using the virus RNA and matrix (M) protein gene-specific primers and compared with established conventional RT-PCR and Taq Man RT-PCR. The assay amplifies a 124 bp fragment of the PPRV M gene with Tm of 78.28 to 78.50. The assay was linear within a range of 50 ng to 0.5 fg total virus RNA with a detection limit (sensitivity) of 0.5 fg. Based on the serial dilution of the live-attenuated PPR vaccine virus, the detection limit was ~0.0001 cell culture infectious dose 50% units (TCID50). Additionally, swab materials spiked with known titre of vaccine virus were equally well detected in the assay. The standardized rt RT-PCR was easily employed for the detection of PPRV nucleic acid directly in the field and experimental clinical samples. The assay detected the PPRV nucleic acid as early as 3 day post infection (dpi) and up to 20 dpi in swab materials from the experimental samples. The assay was rapid and more sensitive than TaqMan and conventional RT-PCR in the detection of PPRV nucleic acid from the PPR suspected clinical samples of sheep and goats. Therefore, the established, simplified SYBR green rt RT-PCR is an alternative test to the already existing various diagnostic assays and could be useful for rapid clinical diagnosis with advantage in reducing risk of contamination.  相似文献   

6.
J Bao  Q Wang  S Parida  C Liu  L Zhang  W Zhao  Z Wang 《Journal of virology》2012,86(19):10885-10886
For the first time, here we announce the complete genome sequence of a field isolate of Peste des petits ruminants virus (PPRV) derived from macerated rectal tissue of a free living bharal (Pseudois nayaur) that displayed clinical disease consistent with severe infection with PPRV. Further, we compare the full genome of this isolate, termed PPRV Tibet/Bharal/2008, with previously available PPRV genomes, including those of virus isolates from domestic small ruminants local to the area where the reported isolate was collected. The current sequence is phylogenetically classified as a lineage IV virus, sharing high levels of sequence identity with previously described Tibetan PPRV isolates. Indeed, across the entire genome, only 26 nucleotide differences (0.16% nucleotide variation) and, consequently, 9 amino acid changes were present compared to sequences of locally derived viruses.  相似文献   

7.
A sensitive and rapid single step real time (rt) RT-PCR was standardized using one-step Brilliant SYBR Green kit® for detection and semi-quantitation of peste des petitis ruminants virus (PPRV) using the virus RNA and matrix (M) protein gene-specific primers and compared with established conventional RT-PCR and TaqMan RT-PCR. The assay amplifies a 124 bp fragment of the PPRV M gene with Tm of 78.28 to 78.50. The assay was linear within a range of 50 ng to 0.5 fg total virus RNA with a detection limit (sensitivity) of 0.5 fg. Based on the serial dilution of the live-attenuated PPR vaccine virus, the detection limit was ~0.0001 cell culture infectious dose 50% units (TCID50). Additionally, swab materials spiked with known titre of vaccine virus were equally well detected in the assay. The standardized rt RT-PCR was easily employed for the detection of PPRV nucleic acid directly in the field and experimental clinical samples. The assay detected the PPRV nucleic acid as early as 3 day post infection (dpi) and up to 20 dpi in swab materials from the experimental samples. The assay was rapid and more sensitive than TaqMan and conventional RT-PCR in the detection of PPRV nucleic acid from the PPR suspected clinical samples of sheep and goats. Therefore, the established, simplified SYBR green rt RT-PCR is an alternative test to the already existing various diagnostic assays and could be useful for rapid clinical diagnosis with advantage in reducing risk of contamination.  相似文献   

8.
Peste-des-petits ruminants virus (PPRV) is a viral pathogen that causes a devastating plague of small ruminants. PPRV is an economically significant disease that continues to be a major obstacle to the development of sustainable agriculture across the developing world. The current understanding of PPRV pathogenesis has been heavily assumed from the closely related rinderpest virus (RPV) and other morbillivirus infections alongside data derived from field outbreaks. There have been few studies reported that have focused on the pathogenesis of PPRV and very little is known about the processes underlying the early stages of infection. In the present study, 15 goats were challenged by the intranasal route with a virulent PPRV isolate, Côte d’Ivoire ’89 (CI/89) and sacrificed at strategically defined time-points post infection to enable pre- and post-mortem sampling. This approach enabled precise monitoring of the progress and distribution of virus throughout the infection from the time of challenge, through peak viraemia and into a period of convalescence. Observations were then related to findings of previous field studies and experimental models of PPRV to develop a clinical scoring system for PPRV. Importantly, histopathological investigations demonstrated that the initial site for virus replication is not within the epithelial cells of the respiratory mucosa, as has been previously reported, but is within the tonsillar tissue and lymph nodes draining the site of inoculation. We propose that virus is taken up by immune cells within the respiratory mucosa which then transport virus to lymphoid tissues where primary virus replication occurs, and from where virus enters circulation. Based on these findings we propose a novel clinical scoring methodology for PPRV pathogenesis and suggest a fundamental shift away from the conventional model of PPRV pathogenesis.  相似文献   

9.
【目的】研究小反刍兽疫病毒囊膜糖蛋白(血凝素蛋白和融合蛋白)在病毒囊膜和宿主细胞膜融合过程中所发挥的作用。【方法】制备构建成功的小反刍兽疫病毒囊膜糖蛋白和病毒受体SLAM、Nectin4的真核表达质粒pCMV-HA-H、pCAGGS-Flag-F、pCMV-Myc-SLAM和pCMV-Myc-Nectin 4,将其组合转染至CHO-K1细胞,通过显微观察和间接免疫荧光技术分析小反刍兽疫病毒H和F蛋白在病毒融合过程中的功能。【结果】除空白对照组和重组质粒单独转染组细胞中没有发现合胞体外,其余组细胞中均出现了合胞体,而且F和H蛋白共转染组合胞体的数目明显较多;并在共表达H、F蛋白的细胞中观察到了蛋白分布极化的帽子现象。【结论】PPRV F蛋白是病毒囊膜和细胞膜融合的必需蛋白,但需要与PPRV H共同作用才能使病毒成功入侵靶细胞。  相似文献   

10.
Despite the fact that the Peste des petits ruminants virus (PPRV) leads to high morbidity and mortality (up to 100%), antiviral drugs against PPRV are not available. The aim of this study was to estimate the dose of epigallocatechin gallate (EGCG) co-administered with zinc (II) ions as an antiviral agent against PPRV. Treatment of PPRV-infectedVero cells with EGCG and zinc sulfate (zinc II) was administered, and antiviral activities against PPRV in infected Vero cells was evaluated by determination of virus yields, expressed as logTCID50/mL. Cytotoxicity was determined using the tetrazolium-based MTS test. Zinc sulfate at 1.1 mg/mL and EGCG at 25 μM showed low potentiated and potentiated antiviral activities against PPRV, respectively. These agents caused significant inhibition of PPRV in Vero cells (p < 0.05) with a reduction in logTCID50/mL by up to 3-fold. The combination of EGCG (25 μM) and zinc sulfate (1.1 mg/mL) was observed to have strong antiviral activity (p < 0.01) against PPRV with a reduction in logTCID50/mL of the virus up to 4-times without causing any host cell cytotoxicity. This study is the first one to prove that the zinc II has the capability of stimulating EGCG to inhibit in vitro PPRV entry. Moreover, this combination appears capable of reducing infection resistance by hindering viral adaptation.  相似文献   

11.
【背景】小反刍兽疫是由小反刍兽疫病毒(Peste des petits ruminants virus,PPRV)引起的一种急性、烈性、接触性传染病,严重威胁我国养羊业的发展。【目的】原核表达PPRVH蛋白,并制备其多克隆抗体。【方法】根据GenBank中PPRV西藏株h基因序列,对其进行密码子大肠杆菌偏爱性优化,采用两步PCR法全化学合成全长h基因。将测序验证正确的h基因克隆至原核表达载体pET-28a、pET-30a、pET-32a,转化E. coli BL21(DE3)并利用IPTG诱导H蛋白表达。以经SDS-PAGE割胶纯化的重组H蛋白免疫新西兰大白兔制备抗PPRV H蛋白多克隆抗体。【结果】重组E. coli [pET-28a(-30a,-32a)-H]表达的重组H蛋白相对分子质量分别约为70、68和86 kD;诱导7 h时PRRV H蛋白表达量最高,而且主要以包涵体形式表达;重组E.coli(pET-30a-H)表达的H蛋白经SDS-PAGE割胶纯化后免疫新西兰大白兔制备的多抗血清能与表达的重组H蛋白发生特异性反应;ELISA法检测抗体效价在1:6400-1:25600之间。【结论】原核表达了PPRVH蛋白,并制备了高效价的抗H蛋白多克隆抗体,为进一步研究PPRV H蛋白的功能及H蛋白的线性B细胞表位作图奠定了基础。  相似文献   

12.
Peste des petits ruminants (PPR) is an acute, febrile, viral disease of small ruminants that has a significant economic impact. For many viral diseases, vaccination with virus-like particles (VLPs) has shown considerable promise as a prophylactic approach; however, the processes of assembly and release of peste des petits ruminants virus (PPRV) VLPs are not well characterized, and their immunogenicity in the host is unknown. In this study, VLPs of PPRV were generated in a baculovirus system through simultaneous expression of PPRV matrix (M) protein and hemaglutin in (H) or fusion (F) protein. The released VLPs showed morphology similar to that of the native virus particles. Subcutaneous injection of these VLPs (PPRV-H, PPRV-F) into mice and goats elicited PPRV-specific IgG production, increased the levels of virus neutralizing antibodies, and promoted lymphocyte proliferation. Without adjuvants, the immune response induced by the PPRV-H VLPs was comparable to that obtained using equivalent amounts of PPRV vaccine. Thus, our results demonstrated that VLPs containing PPRV M protein and H or F protein are potential “differentiating infected from vaccinated animals” (DIVA) vaccine candidates for the surveillance and eradication of PPR.  相似文献   

13.
Peste des petits ruminants (PPR) is a viral disease which primarily affects small ruminants, causing significant economic losses for the livestock industry in developing countries. It is endemic in Saharan and sub-Saharan Africa, the Middle East and the Indian sub-continent. The primary hosts for peste des petits ruminants virus (PPRV) are goats and sheep; however recent models studying the pathology, disease progression and viremia of PPRV have focused primarily on goat models. This study evaluates the tissue tropism and pathogenesis of PPR following experimental infection of sheep and goats using a quantitative time-course study. Upon infection with a virulent strain of PPRV, both sheep and goats developed clinical signs and lesions typical of PPR, although sheep displayed milder clinical disease compared to goats. Tissue tropism of PPRV was evaluated by real-time RT-PCR and immunohistochemistry. Lymph nodes, lymphoid tissue and digestive tract organs were the predominant sites of virus replication. The results presented in this study provide models for the comparative evaluation of PPRV pathogenesis and tissue tropism in both sheep and goats. These models are suitable for the establishment of experimental parameters necessary for the evaluation of vaccines, as well as further studies into PPRV-host interactions.  相似文献   

14.
本研究旨在建立一种简便、快捷、可直观检测小反刍兽疫病毒(peste des petits ruminants virus,PPRV)抗体的检测方法。将pET-32a-N重组质粒转化至大肠杆菌(Escherichia coli) Rosetta(DE3)感受态细胞中进行诱导表达,以纯化的PPRVN蛋白免疫8周龄BALB/c小鼠,取其脾细胞与SP2/0骨髓瘤细胞进行融合,间接酶联免疫吸附试验(enzyme-linked immunosorbent assays, ELISA)筛选及亚克隆,获得了抗PPRV N蛋白的单克隆抗体。将PPRV N蛋白分别作为金标抗原及检测线(T线)包被抗原、单克隆抗体作为质控线(C线)包被抗体,组装成检测PPRVN蛋白抗体的胶体金免疫层析试纸条。结果显示:成功获得1株能稳定分泌抗N蛋白抗体的杂交瘤细胞株,命名为1F1;间接ELISA检测1F1腹水效价为1:128000;亚类鉴定结果为IgG1,轻链为kappa链。Westernblotting结果显示,1F1能与PPRV N蛋白特异性结合;间接免疫荧光(indirect immunofluorescent ass...  相似文献   

15.
Peste des petits ruminants (PPR) is a highly contagious transboundary animal disease with a severe socio-economic impact on the livestock industry, particularly in poor countries where it is endemic. Full understanding of PPR virus (PPRV) pathobiology and molecular biology is critical for effective control and eradication of the disease. To achieve these goals, establishment of stable reverse genetics systems for PPRV would play a key role. Unfortunately, this powerful technology remains less accessible and poorly documented for PPRV. In this review, we discussed the current status of PPRV reverse genetics as well as the recent innovations and advances in the reverse genetics of other non-segmented negative-sense RNA viruses that could be applicable to PPRV. These strategies may contribute to the improvement of existing techniques and/or the development of new reverse genetics systems for PPRV.  相似文献   

16.
王凡  刘建斌  祝秀梅 《生物磁学》2009,(14):2776-2777
小反刍兽疫(PPR)是由小反刍兽疫病毒(PPRV)引起的一种主要感染小反刍动物的急性、烈性、接触性A类传染病,患病率、死亡率高。本文就世界PPR流行状况、PPRV基因组及病毒结构蛋白、PPRV检测方法、最新的药物及疫苗、存在的问题等方面做了简要综述。  相似文献   

17.
首次对我国西藏小反刍兽疫病毒China/Tib/Gej/07-30的核衣壳蛋白(N)基因和基因组启动子(GP)区进行序列测定和分子生物学特征分析。首先应用逆转录聚合酶链式反应从发病山羊病料中扩增出小反刍兽疫病毒N基因片段,用cDNA3′末端快速扩增方法获得基因组启动子区片段,对聚合酶链式反应产物进行直接测序,然后对测定的核苷酸和推测的氨基酸序列进行比较分析,绘制系统发生树。我国西藏小反刍兽疫病毒China/Tib/Gej/07-30的N基因由1689个核苷酸组成,编码525个氨基酸,与India/Jhansi/03等6个已知N基因全序列的PPRV毒株核苷酸和氨基酸序列同源性分别为91.7~97.6和94.9~98.5。小反刍兽疫病毒China/Tib/Gej/07-30N蛋白与磷蛋白作用的结构序列之一为495LFRLQAM501保守序列,N蛋白281-289位氨基酸含有一个T细胞表位,为281YPALGLHEF289保守序列。小反刍兽疫病毒China/Tib/Gej/07-30的GP区由107个核苷酸组成,与Tur-key2000等5株其他PPRV毒株同源性为91.8~98.2。N基因核苷酸序列和相应的氨基酸序列系统进化分析表明小反刍兽疫病毒China/Tib/Gej/07-30与亚洲国家分离株关系最近。  相似文献   

18.
In this study, we aimed to evaluate expression of IL-4, IL-10, TNF-α, IFN-γ and iNOS in lingual, buccal mucosa and lung epithelial tissue using immunoperoxidase technique and to compare with the tissues of control animals. The tissues used in the study were collected from 17 PPRV-affected and 5 healthy sheep and goats. In PPRV positive animals, the lungs, lingual and buccal mucosa had significantly higher iNOS, IFN-γ and TNF-α expressions compared to control group animals. There was no significant difference between PPRV positive and control groups for IL-4 and IL-10 expressions of epithelial tissues. In conclusion, the epithelial tissues infected by PPRV showed significant iNOS, IFN-γ and TNF-α expressions and they might play an important role in the initiation and regulation of cytokine response, as they take place in the first host barrier to be in contact with PPRV. It is suggested that the more epithelial damage produced by PPRV the more cytokine response may result in the infected epithelial cells. The first demonstration of iNOS expression and epithelial cytokine response to PPRV in natural cases is important because it may contribute to an early initiation of systemic immunity against PPRV infection, in addition to direct elimination of the virus during the initial epithelial phase of the infection.  相似文献   

19.
小反刍兽疫是由小反刍兽疫病毒(peste des petits ruminants virus,PPRV)引起的急性、接触性传染病,对我国的畜牧业发展造成了严重的影响,目前主要通过疫苗进行防控。为检测PPRV主要抗原蛋白血凝素(hemagglutinin,H)蛋白的免疫原性,从GenBank数据库中查找了近年来公布的H蛋白氨基酸序列,选择1条符合我国流行趋势的序列,对其基因序列进行优化合成后克隆至pET28a载体上。筛选出表达量高的Rosetta(DE3)菌株进行表达,表达产物经SDS?PAGE、Western Blot及质谱分析鉴定。经镍柱亲和层析纯化出单一H蛋白,取20 μg与佐剂混合后免疫小鼠,收集血清进行抗体效价检测,结果显示,血清中H蛋白抗体滴度在二免2周时达到1∶6 400,表明H蛋白具有较好的免疫原性。进一步对二免2周时血清进行中和抗体检测显示,小鼠血清对PPRV疫苗株具有中和效应,中和效价不超过1∶40。研究结果对H蛋白用于PPRV疫苗的研发提供了理论依据。  相似文献   

20.
2021年1月19日,青海省海西州都兰县巴隆乡伊克高里村发生岩羊不明原因的死亡,表现为离群独处、卧地不起、体质虚弱、觅食困难、肛门周围黑色附着物等现象。通过临床症状、病理学解剖及实时荧光RT-PCR诊断,为小反刍兽疫病毒(PPRV)感染。采用RT-PCR技术从病死岩羊病料组织中扩增出了PPRV N、F基因的部分片段。采用MegAlig、NT1和MEGA6.0软件对岩羊PPRV株N、F基因序列进行了比对和分析,绘制系统进化树,结果显示:此次岩羊感染的PPRV株N、F基因片段与新疆株(China/Xinjiang/2015/16)序列片段的同源性分别为99.43%和99.73%。遗传进化分析,该病原属于基因Ⅳ系。在N、F基因核酸序列水平上,与国内新疆地区分离毒株亲缘关系最近,同在一个小的分支;与国外毒株相比,N基因与塞内加尔和尼日利亚分离毒株亲缘关系较远,F基因与国外分离毒株亲缘关系较远。综上所述,青海岩羊源PPRV株属于基因Ⅳ系,与当前我国流行的野毒株属于同一个谱系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号