首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of digit formation by activin signalling   总被引:10,自引:0,他引:10  
Major advances in the genetics of vertebrate limb development have been obtained in recent years. However, the nature of the signals which trigger differentiation of the mesoderm to form the limb skeleton remains elusive. Previously, we have obtained evidence for a role of TGFbeta2 in digit formation. Here, we show that activins A and B and/or AB are also signals involved in digit skeletogenesis. activin betaA gene expression correlates with the initiation of digit chondrogenesis while activin betaB is expressed coincidently with the formation of the last phalanx of each digit. Exogenous administration of activins A, B or AB into the interdigital regions induces the formation of extra digits. follistatin, a natural antagonist of activins, is expressed, under the control of activin, peripherally to the digit chondrogenic aggregates marking the prospective tendinous blastemas. Exogenous application of follistatin blocks physiological and activin-induced digit formation. Evidence for a close interaction between activins and other signalling molecules, such as BMPs and FGFs, operating at the distal tip of the limb at these stages is also provided. Chondrogenesis by activins is mediated by BMPs through the regulation of the BMP receptor bmpR-1b and in turn activin expression is upregulated by BMP signalling. In addition, AER hyperactivity secondary to Wnt3A misexpression or local administration of FGFs, inhibits activin expression. In correlation with the restricted expression of activins in the course of digit formation, neither activin nor follistatin treatment affects the development of the skeletal components of the stylopod or zeugopod indicating that the formation of the limb skeleton is regulated by segment-specific chondrogenic signals.  相似文献   

2.

Background

Chondrogenesis is the complex process that leads to the establishment of cartilage and bone formation. Due to their ability to differentiate in vitro and mimic development, embryonic stem cells (ESCs) show great potential for investigating developmental processes. In this study, we used chondrogenic differentiation of ESCs as a model to analyze morphogenetic events during chondrogenesis.

Methodology/Principal Findings

ESCs were differentiated into the chondrocyte lineage, forming small cartilaginous aggregates in suspension. Differentiated ESCs showed that chondrogenesis was typically characterized by five overlapping stages. During the first stage, cell condensation and aggregate formation was observed. The second stage was characterized by differentiation into chondrocytes and fibril scaffold formation within spherical aggregates. Deposition of cartilaginous extracellular matrix and cartilage formation were hallmarks of the third stage. Apoptosis of chondrocytes, hypertrophy and/or degradation of cartilage occurred during the fourth stage. Finally, during the fifth stage, bone replacement with membranous calcified tissues took place.

Conclusions/Significance

We demonstrate that ESCs show the chondrogenic differentiation pathway from the pluripotent stem cell to terminal skeletogenesis through these five stages in vitro. During each stage, morphological changes acquired in preceding stages played an important role in further development as a scaffold or template in subsequent stages. The study of chondrogenesis via ESC differentiation may be informative to our further understanding of skeletal growth and regeneration.  相似文献   

3.
4.
5.
Postembryonic skeletal development of the pipid frog Xenopus laevis is described from cleared-and-stained whole-mount specimens and sectioned material representing Nieuwkoop and Faber developmental Stages 46-65, plus postmetamorphic individuals up to 6 months old. An assessment of variation of skeletogenesis within a single population of larvae and comparison with earlier studies revealed that the timing, but not the sequence, of skeletal development in X. laevis is more variable than previously reported and poorly correlated with the development of external morphology. Examination of chondrocranial development indicates that the rostral cartilages of X. laevis are homologous with the suprarostral cartilages of non-pipoid anurans, and suggests that the peculiar chondrocranium of this taxon is derived from a more generalized pattern typical of non-pipoid frogs. Derived features of skeletal development not previously reported for X. laevis include 1) bipartite formation of the palatoquadrate; 2) precocious formation of the adult mandible; 3) origin of the angulosplenial from two centers of ossification; 4) complete erosion of the orbital cartilage during the later stages of metamorphosis; 5) development of the sphenethmoid as a membrane, rather than an endochondral bone; and 6) a pattern of timing of ossification that more closely coincides with that of the pelobatid frog Spea than that recorded for neobatrachian species.  相似文献   

6.
7.
SH2-containing inositol-5′-phosphatase-1 (SHIP-1) controls the phosphatidylinositol-3′-kinase (PI3K) initiated signaling pathway by limiting cell membrane recruitment and activation of Akt. Despite the fact that many of the growth factors important to cartilage development and functions are able to activate the PI3K signal transduction pathway, little is known about the role of PI3K signaling in chondrocyte biology and its contribution to mammalian skeletogenesis. Here, we report that the lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development through its expression in osteochondroprogenitor cells. Global SHIP-1 knockout led to accelerated chondrocyte hypertrophy and premature formation of the secondary ossification center in the bones of postnatal mice. Drastically higher vascularization and greater number of c-kit + progenitors associated with sinusoids in the bone marrow also indicated more advanced chondrocyte hypertrophic differentiation in SHIP-1 knockout mice than in wild-type mice. In corroboration with the in vivo phenotype, SHIP-1 deficient PDGFRα + Sca-1 + osteochondroprogenitor cells exhibited rapid differentiation into hypertrophic chondrocytes under chondrogenic culture conditions in vitro. Furthermore, SHIP-1 deficiency inhibited hypoxia-induced cellular activation of Akt and extracellular-signal-regulated kinase (Erk) and suppressed hypoxia-induced cell proliferation. These results suggest that SHIP-1 is required for hypoxia-induced growth signaling under physiological hypoxia in the bone marrow. In conclusion, the lipid phosphatase SHIP-1 regulates skeletal development by modulating chondrogenesis and the hypoxia response of the osteochondroprogenitors during endochondral bone formation.  相似文献   

8.
Here, we have studied how Sox genes and BMP signaling are functionally coupled during limb chondrogenesis. Using the experimental model of TGFbeta1-induced interdigital digits, we dissect the sequence of morphological and molecular events during in vivo chondrogenesis. Our results show that Sox8 and Sox9 are the most precocious markers of limb cartilage, and their induction is independent and precedes the activation of BMP signaling. Sox10 appears also to cooperate with Sox9 and Sox8 in the establishment of the digit cartilages. In addition, we show that experimental induction of Sox gene expression in the interdigital mesoderm is accompanied by loss of the apoptotic response to exogenous BMPs. L-Sox5 and Sox6 are respectively induced coincident and after the expression of Bmpr1b in the prechondrogenic aggregate, and their activation correlates with the induction of Type II Collagen and Aggrecan genes in the differentiating cartilages. The expression of Bmpr1b precedes the appearance of morphological changes in the prechondrogenic aggregate and establishes a landmark from which the maintenance of the expression of all Sox genes and the progress of cartilage differentiation becomes dependent on BMPs. Moreover, we show that Ventroptin precedes Noggin in the modulation of BMP activity in the developing cartilages. In summary, our findings suggest that Sox8, Sox9, and Sox10 have a cooperative function conferring chondrogenic competence to limb mesoderm in response to BMP signals. In turn, BMPs in concert with Sox9, Sox6, and L-Sox5 would be responsible for the execution and maintenance of the cartilage differentiation program.  相似文献   

9.
10.
11.
Mechanisms of GDF-5 action during skeletal development   总被引:18,自引:0,他引:18  
Mutations in GDF-5, a member of the TGF-beta superfamily, result in the autosomal recessive syndromes brachypod (bp) in mice and Hunter-Thompson and Grebe-type chondrodysplasias in humans. These syndromes are all characterised by the shortening of the appendicular skeleton and loss or abnormal development of some joints. To investigate how GDF-5 controls skeletogenesis, we overexpressed GDF-5 during chick limb development using the retrovirus, RCASBP. This resulted in up to a 37.5% increase in length of the skeletal elements, which was predominantly due to an increase in the number of chondrocytes. By injecting virus at different stages of development, we show that GDF-5 can increase both the size of the early cartilage condensation and the later developing skeletal element. Using in vitro micromass cultures as a model system to study the early steps of chondrogenesis, we show that GDF-5 increases chondrogenesis in a dose-dependent manner. We did not detect changes in proliferation. However, cell suspension cultures showed that GDF-5 might act at these stages by increasing cell adhesion, a critical determinant of early chondrogenesis. In contrast, pulse labelling experiments of GDF-5-infected limbs showed that at later stages of skeletal development GDF-5 can increase proliferation of chondrocytes. Thus, here we show two mechanisms of how GDF-5 may control different stages of skeletogenesis. Finally, our data show that levels of GDF-5 expression/activity are important in controlling the size of skeletal elements and provides a possible explanation for the variation in the severity of skeletal defects resulting from mutations in GDF-5.  相似文献   

12.
The oral cirri of amphioxus function as the first filter during feeding by eliminating unwanted large or noxious particulates. In this study, we were able to regenerate cirri following artificial amputation. This is the first firm observation of regeneration in amphioxus. Using this regeneration system, we studied skeletogenesis of the cellular skeleton of amphioxus oral cirri. During regeneration, the skeletal cells showed expression of fibrillar collagen and SoxE genes. These observations suggest that an evolutionarily conserved genetic regulatory system is involved in amphioxus cirrus and vertebrate cartilage skeletogenesis. In addition, Runx and SPARC/osteonectin expression were observed in regenerating cirral skeletal cells, indicating that cirral skeletogenesis is similar to vertebrate osteogenesis. We propose that the common ancestors of chordates possessed a genetic regulatory system that was the prototype of chondrogenesis and osteogenesis in vertebrates. Genome duplications caused divergence of this genetic regulatory system resulting in the emergence of cartilage and mineralized bone. The development of the vertebrate skeleton is an example of the functional segregation and subsequent recruitment of unique genetic materials that may account for the evolutionary diversification of novel cell types.  相似文献   

13.
It is becoming increasingly clear that mesenchymal stem cell (MSC) differentiation is regulated by mechanical signals. Mechanical forces generated intrinsically within the cell in response to its extracellular environment, and extrinsic mechanical signals imposed upon the cell by the extracellular environment, play a central role in determining MSC fate. This article reviews chondrogenesis and osteogenesis during skeletogenesis, and then considers the role of mechanics in regulating limb development and regenerative events such as fracture repair. However, observing skeletal changes under altered loading conditions can only partially explain the role of mechanics in controlling MSC differentiation. Increasingly, understanding how epigenetic factors, such as the mechanical environment, regulate stem cell fate is undertaken using tightly controlled in vitro models. Factors such as bioengineered surfaces, substrates, and bioreactor systems are used to control the mechanical forces imposed upon, and generated within, MSCs. From these studies, a clearer picture of how osteogenesis and chondrogenesis of MSCs is regulated by mechanical signals is beginning to emerge. Understanding the response of MSCs to such regulatory factors is a key step towards understanding their role in development, disease and regeneration. Birth Defects Research (Part C) 90:75–85, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Morphogenesis of the cartilaginous otic capsule is directed by interactions between the epithelial anlage of the membranous labyrinth (otocyst) and its associated periotic mesenchyme. Utilizing a developmental series of high-density (micromass) cultures of periotic mesenchyme to model capsule chondrogenesis, we have shown that the early influence of otic epithelium in cultures of 10.5- or 14-gestation day (gd) periotic mesenchyme results in initiation or suppression of chondrogenesis, respectively. Furthermore, we have shown that introduction of otic epithelium at two distinct times during in vitro development to cultures of 10.5-gd mesenchyme cells results first in an initiation and then in an inhibition of their chondrogenic response. These influences of epithelial tissue on chondrogenic differentiation by periotic mesenchyme are not tissue specific but are characterized by temporal selectivity. The ability of otic epithelium to influence chondrogenesis and the competence of the periotic mesenchyme to respond to its signals are dependent upon the developmental stage of both tissues. This study provides conclusive evidence that otic epithelium acts as a developmental "switch" during otic capsule morphogenesis, signaling first the turning on and then the turning off of chondrogenic programs in the responding cephalic mesenchyme.  相似文献   

15.
Bone morphogenetic protein (BMP) family members, including BMP2, BMP4, and BMP7, are expressed throughout limb development. BMPs have been implicated in early limb patterning as well as in the process of skeletogenesis. However, due to complications associated with early embryonic lethality, particularly for Bmp2 and Bmp4, and with functional redundancy among BMP molecules, it has been difficult to decipher the specific roles of these BMP molecules during different stages of limb development. To circumvent these issues, we have constructed a series of mouse strains lacking one or more of these BMPs, using conditional alleles in the case of Bmp2 and Bmp4 to remove them specifically from the limb bud mesenchyme. Contrary to earlier suggestions, our results indicate that BMPs neither act as secondary signals downstream of Sonic Hedghog (SHH) in patterning the anteroposterior axis nor as signals from the interdigital mesenchyme in specifying digit identity. We do find that a threshold level of BMP signaling is required for the onset of chondrogenesis, and hence some chondrogenic condensations fail to form in limbs deficient in both BMP2 and BMP4. However, in the condensations that do form, subsequent chondrogenic differentiation proceeds normally even in the absence of BMP2 and BMP7 or BMP2 and BMP4. In contrast, we find that the loss of both BMP2 and BMP4 results in a severe impairment of osteogenesis.  相似文献   

16.
The skeleton is formed by two different mechanisms. In intramembranous ossification, osteoblasts form bone directly, whereas in endochondral ossification, chondrocytes develop a cartilage template, prior to osteoblast-mediated skeletogenesis. Lactoferrin is an iron-binding glycoprotein belonging to the transferrin family. It is known to promote the growth and differentiation of osteoblasts. In this study, we investigated the effects of bovine lactoferrin on the chondrogenic differentiation of ATDC5 chondroprogenitor cells. This mouse embryonic carcinoma-derived clonal cell line provides an in vitro model of chondrogenesis. Lactoferrin treatment of differentiating ATDC5 cells promoted cell proliferation in the initial stage of the differentiation process. However, lactoferrin treatment resulted in inhibition of hypertrophic differentiation, characterized by suppression of alkaline phosphatase activity, aggrecan synthesis and N-cadherin expression. This inhibitory effect was accompanied by sustained Sox9 expression, as well as increased Smad2/3 expression and phosphorylation, suggesting that lactoferrin regulates chondrogenic differentiation by up-regulating the Smad2/3-Sox9 signaling pathway.  相似文献   

17.
Selective stimulation of in vitro limb-bud chondrogenesis by retinoic acid   总被引:8,自引:0,他引:8  
Embryonic exposure to pharmacologic doses of vitamin A analogs (retinoids) is a well-known cause of limb-skeletal deletions, limb truncation and other skeletal malformations. The exclusively inhibitory effect of retinoic acid (RA) on chondrogenesis in standard serum-containing cultures of limb-bud mesenchymal cells is equally well known and has provided a means to explore the cellular basis for RA-mediated skeletal teratogenesis. Recent studies showing that lower RA concentrations can cause skeletal duplication when applied directly to the anterior border of a developing limb, suggest that RA may have a role in normal limb development as a diffusible morphogen capable of regulating skeletal pattern. While RA treatment causes both, skeletal deletions and duplications are clearly different (if not opposing) effects, the latter of which is difficult to reconcile with RA's heretofore exclusively inhibitory effect on in vitro chondrogenesis. In the present study. RA's effects on chondrogenesis and myogenesis were examined in serum-free cultures of chick limb-bud mesenchymal cells and compared with its effects on similar cultures grown in serum-containing medium. When added to serum-free medium, concentrations of RA known to cause skeletal duplication in vivo dramatically enhanced in vitro chondrogenesis (to over 200% of control values) as judged by both Alcian-blue staining and [35S]sulfate incorporation, while having little effect on myogenesis. Higher concentrations inhibited both chondrogenesis and myogenesis. The results indicate that at physiological concentrations. RA can selectively modulate chondrogenic expression and suggest that at higher concentrations, RA's inhibitory effects are less specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The extracellular matrix (ECM) plays a critical role in governing cell behavior and phenotype during limb skeletogenesis. Chondroitin sulfate proteoglycans (Cspgs) are highly expressed in the ECM of precartilage mesenchymal condensations and are important to limb chondrogenesis and cartilage structure, but little is known regarding their involvement in formation of synovial joints in the embryonic limb. Matrix versican Cspg expression has previously been reported in the epiphysis of developing long bones and presumptive joint; however, detailed analysis has not yet been conducted. In the present study we immunolocalized versican and aggrecan Cspgs during chick elbow joint morphogenesis between HH st25-41 of development. In this study we show that versican and aggrecan expression initially overlapped in the incipient cartilage model of long bones in the wing, but versican was also highly expressed in the perichondrium and presumptive joint interzone during early stages of morphogenesis (HH st25-34). By HH st36-41 versican localization was restricted to the future articular surfaces of the developing joint and surrounding joint capsule while aggrecan localized in an immediately adjacent and predominately non-overlapping region of chondrogenic cells at the epiphyses. These results suggest a potential role for versican proteoglycan in development and maintenance of the synovial joint interzone.  相似文献   

19.
Zebrafish tgfβ3 is strongly expressed in a subpopulation of the migrating neural crest cells, developing pharyngeal arches and neurocranial cartilages. To study the regulatory role of tgfβ3 in head skeletal formation, we knocked down tgfβ3 in zebrafish and found impaired craniofacial chondrogenesis, evident by malformations in selected neurocranial and pharyngeal arch cartilages. Over-expressing tgfβ3 in embryos resulted in smaller craniofacial cartilages without any gross malformations. These defects suggest that tgfβ3 is required for normal chondrogenesis. To address the cellular mechanisms that lead to the observed malformations, we analyzed cranial neural crest development in morphant and tgfβ3 over-expressing fish. We observed reduced pre-migratory and migratory cranial neural crest, the precursors of the neurocranial cartilage and pharyngeal arches, in tgfβ3 knockdown embryos. In contrast, only the migratory neural crest was reduced in embryos over-expressing tgfβ3. This raised the possibility that the reduced number of cranial neural crest cells is a result of increased apoptosis. Consistent with this, markedly elevated TUNEL staining in the midbrain and hindbrain, and developing pharyngeal arch region was observed in morphants, while tgfβ3 over-expressing embryos showed marginally increased apoptosis in the developing pharyngeal arch region. We propose that both Tgfβ3 suppression and over-expression result in reduced chondrocyte and osteocyte formation, but to different degrees and through different mechanisms. In Tgfβ3 suppressed embryos, this is due to impaired formation and survival of a subpopulation of cranial neural crest cells through markedly increased apoptosis in regions containing the cranial neural crest cells, while in Tgfβ3 over-expressing embryos, the milder phenotype is also due to a slightly elevated apoptosis in these regions. Therefore, proper cranial neural crest formation and survival, and ultimately craniofacial chondrogenesis and osteogenesis, are dependent on tight regulation of Tgfβ3 protein levels in zebrafish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号