首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The betagamma subunits of G proteins modulate inwardly rectifying potassium (GIRK) channels through direct interactions. Although GIRK currents are stimulated by mammalian Gbetagamma subunits, we show that they were inhibited by the yeast Gbetagamma (Ste4/Ste18) subunits. A chimera between the yeast and the mammalian Gbeta1 subunits (ymbeta) stimulated or inhibited GIRK currents, depending on whether it was co-expressed with mammalian or yeast Ggamma subunits, respectively. This result underscores the critical functional influence of the Ggamma subunits on the effectiveness of the Gbetagamma complex. A series of chimeras between Ggamma2 and the yeast Ggamma revealed that the C-terminal half of the Ggamma2 subunit is required for channel activation by the Gbetagamma complex. Point mutations of Ggamma2 to the corresponding yeast Ggamma residues identified several amino acids that reduced significantly the ability of Gbetagamma to stimulate channel activity, an effect that was not due to improper association with Gbeta. Most of the identified critical Ggamma residues clustered together, forming an intricate network of interactions with the Gbeta subunit, defining an interaction surface of the Gbetagamma complex with GIRK channels. These results show for the first time a functional role for Ggamma in the effector role of Gbetagamma.  相似文献   

2.
The mating pathway of Saccharomyces cerevisiae is widely used as a model system for G protein-coupled receptor-mediated signal transduction. Following receptor activation by the binding of mating pheromones, G protein betagamma subunits transmit the signal to a MAP kinase cascade, which involves interaction of Gbeta (Ste4p) with the MAP kinase scaffold protein Ste5p. Here, we identify residues in Ste4p required for the interaction with Ste5p. These residues define a new signaling interface close to the Ste20p binding site within the Gbetagamma coiled-coil. Ste4p mutants defective in the Ste5p interaction interact efficiently with Gpa1p (Galpha) and Ste18p (Ggamma) but cannot function in signal transduction because cells expressing these mutants are sterile. Ste4 L65S is temperature-sensitive for its interaction with Ste5p, and also for signaling. We have identified a Ste5p mutant (L196A) that displays a synthetic interaction defect with Ste4 L65S, providing strong evidence that Ste4p and Ste5p interact directly in vivo through an interface that involves hydrophobic residues. The correlation between disruption of the Ste4p-Ste5p interaction and sterility confirms the importance of this interaction in signal transduction. Identification of the Gbetagamma coiled-coil in Ste5p binding may set a precedent for Gbetagamma-effector interactions in more complex organisms.  相似文献   

3.
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.  相似文献   

4.
In yeast Saccharomyces cerevisiae the G protein betagamma subunits (Ste4/Ste18) have long been known to transmit the signal required for mating. Here we demonstrate that GTPase-deficient mutants of Galpha (Gpa1) directly activate the mating response pathway. We also show that signaling by activated Gpa1 requires direct coupling to an RNA binding protein Scp160. These findings suggest an additional role for Gpa1 and reveal Scp160 as a component of the mating response pathway in yeast.  相似文献   

5.
To establish the biological function of thioacylation (palmitoylation), we have studied the heterotrimeric guanine nucleotide-binding protein (G protein) subunits of the pheromone response pathway of Saccharomyces cerevisiae. The yeast G protein gamma subunit (Ste18p) is unusual among G(gamma) subunits because it is farnesylated at cysteine 107 and has the potential to be thioacylated at cysteine 106. Substitution of either cysteine results in a strong signaling defect. In this study, we found that Ste18p is thioacylated at cysteine 106, which depended on prenylation of cysteine 107. Ste18p was targeted to the plasma membrane even in the absence of prenylation or thioacylation. However, G protein activation released prenylation- or thioacylation-defective Ste18p into the cytoplasm. Hence, lipid modifications of the G(gamma) subunit are dispensable for G protein activation by receptor, but they are required to maintain the plasma membrane association of G(betagamma) after receptor-stimulated release from G(alpha). The G protein alpha subunit (Gpa1p) is tandemly modified at its N terminus with amide- and thioester-linked fatty acids. Here we show that Gpa1p was thioacylated in vivo with a mixture of radioactive myristate and palmitate. Mutation of the thioacylation site in Gpa1p resulted in yeast cells that displayed partial activation of the pathway in the absence of pheromone. Thus, dual lipidation motifs on Gpa1p and Ste18p are required for a fully functional pheromone response pathway.  相似文献   

6.
This review focuses on the coupling specificity of the Galpha and Gbetagamma subunits of pertussis toxin (PTX)-sensitive G(i/o) proteins that mediate diverse signaling pathways, including regulation of ion channels and other effectors. Several lines of evidence indicate that specific combinations of G protein alpha, beta and gamma subunits are required for different receptors or receptor-effector networks, and that a higher degree of specificity for Galpha and Gbetagamma is observed in intact systems than reported in vitro. The structural determinants of receptor-G protein specificity remain incompletely understood, and involve receptor-G protein interaction domains, and perhaps other scaffolding processes. By identifying G protein specificity for individual receptor signaling pathways, ligands targeted to disrupt individual pathways of a given receptor could be developed.  相似文献   

7.
Saccharomyces cerevisiae uses G protein-coupled receptors for signal transduction. We show that a fusion protein between the alpha-factor receptor (Ste2) and the Galpha subunit (Gpa1) transduces the signal efficiently in yeast cells devoid of the endogeneous STE2 and GPA1 genes. To evaluate the function of different domains of Galpha, a chimera between the N-terminal region of yeast Gpa1 and the C-terminal region of rat Gsalpha has been constructed. This chimeric Gpa1-Gsalpha is capable of restoring viability to haploid gpa1Delta cells, but signal transduction is prevented. This is consistent with evidence showing that the C-terminus of the homologous Galpha is required for receptor-G protein recognition. Surprisingly, a fusion protein between Ste2 and Gpa1-Gsalpha is able to transduce the signal efficiently. It appears, therefore, that the C-terminus of Galpha is mainly responsible for bringing the G protein into the close proximity of the receptor's intracellular domains, thus ensuring efficient coupling, rather than having a particular role in transmitting the signal. To confirm this conclusion, we show that two proteins interacting with each other (such as Snf1 and Snf4, or Ras and Raf), each of them fused either to the receptor or to the chimeric Galpha, allow efficient signal transduction.  相似文献   

8.
G protein-coupled receptors (GPCRs) form dimeric or oligomeric complexes in vivo. However, the function of oligomerization in receptor-mediated G protein activation is unclear. Previous studies of the yeast alpha-factor receptor (STE2 gene product) have indicated that oligomerization promotes signaling. Here we have addressed the mechanism by which oligomerization facilitates G protein signaling by examining the ability of ligand binding- and G protein coupling-defective alpha-factor receptors to form complexes in vivo and to correct their signaling defects when co-expressed (trans complementation). Newly and previously identified receptor mutants indicated that ligand binding involves the exofacial end of transmembrane domain (TM) 4, whereas G protein coupling involves ic1, ic3, the C-terminal tail, and the intracellular ends of TM2 and TM3. Mutant receptors bearing substitutions in these domains formed homo-oligomeric or hetero-oligomeric complexes in vivo, as indicated by results of fluorescence resonance energy transfer experiments. Co-expression of ligand binding- and G protein coupling-defective mutant receptors did not significantly improve signaling. In contrast, co-expression of ic1 and ic3 mutations in trans but not in cis significantly increased signaling efficiency. Therefore, we suggest that subunits of the alpha-factor receptor: 1) are activated independently rather than cooperatively by agonist, and 2) function in a concerted fashion to promote G protein activation, possibly by contacting different subunits or regions of the G protein heterotrimer.  相似文献   

9.
The Ste2 gene encodes the yeast alpha-pheromone receptor that belongs to the superfamily of seven-transmembrane G protein-coupled receptors. Binding of pheromone induces activation of the heterotrimeric G protein triggering growth arrest in G1 phase and induction of genes required for mating. By random PCR-mediated mutagenesis we isolated mutant 8L4, which presents a substitution of an asparagine residue by serine at position 388 of the alpha-factor receptor. The 8L4 mutant strain shows phenotypic defects such as: reduction in growth arrest after pheromone treatment, diminished activation of the Fus1 gene, and impaired mating competence. The asparagine residue lies in the second half of the intracellular protruding C-terminal tail of the receptor, and its replacement by serine affects interaction with both the G(alpha) and Gbeta subunits. Since expression of the receptor as well as its kinetic parameters, i.e., ligand affinity and receptor number, are unaffected in the mutant strain, we propose that association of the C-terminal tail of the receptor with G(alpha) and Gbeta subunits is required for proper activation of the heterotrimeric G protein. Besides its described role in downregulation and in formation of preactivation complex, the results here shown indicate that the C-terminal tail of the receptor plays an active role in transmitting the stimulus of mating pheromone to the heterotrimeric G protein.  相似文献   

10.
In order to identify amino acid residues of Ste4p involved in receptor recognition and/or receptor-G protein coupling, we employed random in vitro mutagenesis and a genetic screening to isolate mutant Ste4p subunits with altered pheromone response. We generated a plasmid library containing randomly mutagenized Ste4 ORFs, followed by phenotypic selection of ste4p mutants by altered alpha pheromone response in yeast cells. Subsequently, we analyzed mutant ste4-10 which has a replacement of the almost universally conserved leucine 132 by phenylalanine. This residue lies in the first blade of the beta propeller structure proposed by crystallographic analysis. By overexpression experiments we found that mutant ste4p subunit triggers the mating pathway at wild type levels in both wild type and receptorless strains. When expressed in a ste4 background, however, the mutant G protein is activated inefficiently by mating pheromone in both a and alpha cells. The mutant ste4-10p was tested in the two-hybrid system and found to be defective in its interaction with the Gpa1p, but has a normal association with the C-termini end of the Ste2p receptor. These observations strongly suggest that the Leu-132 of the Ste4p subunit is essential for efficient activation of the G protein by the pheromone-stimulated receptor and that this domain could be an important point for physical interaction between the Gbeta and the Galpha subunits.  相似文献   

11.
12.
Signaling and desensitization of G protein-coupled receptor are intimately related, and measuring them separately requires certain parameters that represent desensitization independently of signaling. In this study, we tested whether desensitization requires signaling in three different receptors, beta2-adrenergic receptor (beta2AR) in S49 lymphoma cells, alpha-factor pheromone receptor (Ste2p) in Saccharomyces cerevisiae LM102 cells, and dopamine D3 receptor (D3R) in HEK-293 cells. Agonist-induced beta-arrestin translocation to the plasma membrane or receptor sequestration was measured to estimate homologous desensitization. To separate the signaling and desensitization of beta2AR, which mediates stimulation of adenylyl cyclase, S49 lymphoma cys- cells that lack the alpha subunit of Gs were used. Stimulation of beta2AR in these cells failed to increase intracellular cAMP, but beta-arrestin translocation still occurred, suggesting that feedback from beta2AR signaling is not required for homologous desensitization to occur. Agonist-induced sequestration of the yeast Ste2p-L236R, which showed reduced signaling through G protein, was not different from that of wildtype Ste2p, suggesting that the receptor signaling and sequestration are not directly linked cellular events. Both G protein coupling and D3R signaling, measured as inhibition of cAMP production, were greatly enhanced by co-expression of exogenous alpha subunit of Go (Goalpha) or adenylyl cyclase type 5 (AC5), respectively. However, agonist-induced beta-arrestin translocation, receptor phosphorylation, and sequestration were not affected by co-expression of Galphao and AC5, suggesting that the extent of signaling does not determine desensitization intensity. Taken together, our results consistently suggest that G protein signaling and homologous desensitization are independent cellular processes.  相似文献   

13.
Serine/threonine protein kinases of the Ste20p/PAK family are highly conserved from yeast to man. These protein kinases have been implicated in the signaling from heterotrimeric G proteins to mitogen-activated protein (MAP) kinase cascades and to cytoskeletal components such as myosin-I. In the yeast Saccharomyces cerevisiae, Ste20p is involved in transmitting the mating-pheromone signal from the betagamma-subunits of a heterotrimeric G protein to a downstream MAP kinase cascade. We have previously shown that binding of the G-protein beta-subunit (Gbeta) to a short binding site in the non-catalytic carboxy-terminal region of Ste20p is essential fortransmitting the pheromone signal. In this study, we searched protein sequence databases for sequences that are similar to the Gbeta binding site in Ste20p. We identified a sequence motif with the consensus sequence S S L phi P L I/V x phi phi beta (x: any residue; phi: A, I, L, S, or T; beta: basic residues) that is solely present in members of Ste20p/PAK family protein kinases. We propose that this sequence motif, which we have designated GBB (Gbeta binding) motif, is specifically responsible for binding of Gbeta to Ste20p/PAK protein kinases in response to activation of heterotrimeric G protein coupled receptors. Thus, the GBB motif is a novel type of signaling domain that serves to link protein kinases of the Ste20p/PAK family to G protein coupled receptors.  相似文献   

14.
In Saccharomyces cerevisiae, pheromone response requires Ste5 scaffold protein, which ensures efficient G-protein-dependent recruitment of mitogen-activated protein kinase (MAPK) cascade components Ste11 (MAPK kinase kinase), Ste7 (MAPK kinase), and Fus3 (MAPK) to the plasma membrane for activation by Ste20 protein kinase. Ste20, which phosphorylates Ste11 to initiate signaling, is activated by binding to Cdc42 GTPase (membrane anchored via its C-terminal geranylgeranylation). Less clear is how activated and membrane-localized Ste20 contacts Ste11 to trigger invasive growth signaling, which also requires Ste7 and the MAPK Kss1, but not Ste5. Ste50 protein associates constitutively via an N-terminal sterile-alpha motif domain with Ste11, and this interaction is required for optimal invasive growth and hyperosmotic stress (high-osmolarity glycerol [HOG]) signaling but has a lesser role in pheromone response. We show that a conserved C-terminal, so-called "Ras association" (RA) domain in Ste50 is also essential for invasive growth and HOG signaling in vivo. In vitro the Ste50 RA domain is not able to associate with Ras2, but it does associate with Cdc42 and binds to a different face than does Ste20. RA domain function can be replaced by the nine C-terminal, plasma membrane-targeting residues (KKSKKCAIL) of Cdc42, and membrane-targeted Ste50 also suppresses the signaling deficiency of cdc42 alleles specifically defective in invasive growth. Thus, Ste50 serves as an adaptor to tether Ste11 to the plasma membrane and can do so via association with Cdc42, thereby permitting the encounter of Ste11 with activated Ste20.  相似文献   

15.
Phosducin-like protein (PhLP) is a widely expressed binding partner of the G protein betagamma subunit dimer (Gbetagamma). However, its physiological role is poorly understood. To investigate PhLP function, its cellular expression was blocked using RNA interference, resulting in inhibition of Gbetagamma expression and G protein signaling. This inhibition was caused by an inability of nascent Gbetagamma to form dimers. Phosphorylation of PhLP at serines 18-20 by protein kinase CK2 was required for Gbetagamma formation, while a high-affinity interaction of PhLP with the cytosolic chaperonin complex appeared unnecessary. PhLP bound nascent Gbeta in the absence of Ggamma, and S18-20 phosphorylation was required for Ggamma to associate with the PhLP-Gbeta complex. Once Ggamma bound, PhLP was released. These results suggest a mechanism for Gbetagamma assembly in which PhLP stabilizes the nascent Gbeta polypeptide until Ggamma can associate, resulting in membrane binding of Gbetagamma and release of PhLP to catalyze another round of assembly.  相似文献   

16.
Activator of G protein signaling 3 (AGS3) activates the Gbetagamma mating pathway in yeast in a manner that is independent of heptahelical receptors. It competes with Gbetagamma subunits to bind GDP-bound Gi/o(alpha) subunits via four repeated G protein regulatory (GPR) domains in the carboxyl-terminal half of the molecule. However, little is known about the functional role of AGS3 in cellular signaling. Here the effect of AGS3 on receptor-G protein coupling was examined in an Sf9 cell membrane-based reconstitution system. A GST-AGS3-GPR fusion protein containing the four individual AGS3-GPR domains inhibits receptor coupling to Galpha subunits as effectively as native AGS3 and more effectively than GST fusion proteins containing the individual AGS3-GPR domains. While none of the GPR domains distinguished among the three G(i)alpha subunits, both individual and full-length GPR domains interacted more weakly with G(o)alpha than with G(i)alpha. Cytosolic AGS3, but not membrane-associated AGS3, can interact with G(i)alpha subunits and disrupt their receptor coupling. Immunoblotting studies reveal that cytosolic AGS3 can remove G(i)alpha subunits from the membrane and sequester G(i)alpha subunits in the cytosol. These findings suggest that AGS3 may downregulate heterotrimeric G protein signaling by interfering with receptor coupling.  相似文献   

17.
To facilitate structure-function relationship studies of the V2 vasopressin receptor, a prototypical G(s)-coupled receptor, we generated V2 receptor-expressing yeast strains (Saccharomyces cerevisiae) that required arginine vasopressin-dependent receptor/G protein coupling for cell growth. V2 receptors heterologously expressed in yeast were unable to productively interact with the endogenous yeast G protein alpha subunit, Gpa1p, or a mutant Gpa1p subunit containing the C-terminal G alpha(q) sequence (Gq5). In contrast, the V2 receptor efficiently coupled to a Gpa1p/G alpha(s) hybrid subunit containing the C-terminal G alpha(s) sequence (Gs5), indicating that the V2 receptor retained proper G protein coupling selectivity in yeast. To gain insight into the molecular basis underlying the selectivity of V2 receptor/G protein interactions, we used receptor saturation random mutagenesis to generate a yeast library expressing mutant V2 receptors containing mutations within the second intracellular loop. A subsequent yeast genetic screen of about 30,000 mutant receptors yielded four mutant receptors that, in contrast to the wild-type receptor, showed substantial coupling to Gq5. Functional analysis of these mutant receptors, followed by more detailed site-directed mutagenesis studies, indicated that single amino acid substitutions at position Met(145) in the central portion of the second intracellular loop of the V2 receptor had pronounced effects on receptor/G protein coupling selectivity. We also observed that deletion of single amino acids N-terminal of Met(145) led to misfolded receptor proteins, whereas single amino acid deletions C-terminal of Met(145) had no effect on V2 receptor function. These findings highlight the usefulness of combining receptor random mutagenesis and yeast expression technology to study mechanisms governing receptor/G protein coupling selectivity and receptor folding.  相似文献   

18.
19.
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches in signaling pathways by coupling the activation of heptahelical receptors at the cell surface to intracellular responses. In the resting state, the G-protein alpha subunit (Galpha) binds GDP and Gbetagamma. Receptors activate G proteins by catalyzing GTP for GDP exchange on Galpha, leading to a structural change in the Galpha(GTP) and Gbetagamma subunits that allows the activation of a variety of downstream effector proteins. The G protein returns to the resting conformation following GTP hydrolysis and subunit re-association. As the G-protein cycle progresses, the Galpha subunit traverses through a series of conformational changes. Crystallographic studies of G proteins in many of these conformations have provided substantial insight into the structures of these proteins, the GTP-induced structural changes in Galpha, how these changes may lead to subunit dissociation and allow Galpha and Gbetagamma to activate effector proteins, as well as the mechanism of GTP hydrolysis. However, relatively little is known about the receptor-G protein complex and how this interaction leads to GDP release from Galpha. This article reviews the structural determinants of the function of heterotrimeric G proteins in mammalian systems at each point in the G-protein cycle with special emphasis on the mechanism of receptor-mediated G-protein activation. The receptor-G protein complex has proven to be a difficult target for crystallography, and several biophysical and computational approaches are discussed that complement the currently available structural information to improve models of this interaction. Additionally, these approaches enable the study of G-protein dynamics in solution, which is becoming an increasingly appreciated component of all aspects of G-protein signaling.  相似文献   

20.
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号