首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cowpea (Vigna unguiculata (L.) Walp.) nodules have been investigated by means of cytochemical and immunocytochemical procedures at the ultrastructural level in order to assess the role of the uninfected cells in ureide biogenesis. Uricase activity in the nodules was shown by cytochemical methods to be localized exclusively in the numberous large peroxisomes confined to the uninfected cells; the small peroxisomes in the infected cells did not stain for uricase. Uricase was also localized in the peroxisomes of uninfected cells by immunogold techniques employing polyclonal antibodies against nodule-specific uricase of soybean. There was no labeling above background of any structures in the infected cells. The results indicate that the uninfected cells are essential for ureide biogenesis in cowpea. Although tubular endoplasmic reticulum, the presumptive site of allantoinase, increases greatly in the uninfected cells during nodule development, it virtually disappears as the nodules mature. The inconsistency between the disappearance of the tubular endoplasmic reticulum from older nodules and the high allantoinase activity reported for older plants remains to be explained.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum - GARG goat anti-rabbit immunoglobulin G - IgG immunoglobulin G - kDa knodalton - Mr apparent molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

2.
Immunogold labeling was used to study the time of appearance and distribution of a nodule-specific form of uricase (EC 1.7.3.3) in developing nodules of soybean (Glycine max (L.) Merr.) inoculated with Bradyrhizobium japonicum. The enzyme was detected in thin sections of tissue embedded in either L R White acrylic resin or Spurr's epoxy resin, by employing a polyclonal antibody preparation active against a subunit of soybean nodule uricase. Antigenicity was better preserved in L R White resin, but ultrastructure was better maintained in Spurr's. Uricase was first detectable with protein A-gold in young, developing peroxisomes in uninfected cells, coincident with the release of Bradyrhizobium bacteroids from infection threads in adjacent infected cells. As the peroxisomes enlarged, labeling of the dense peroxisomal matrix increased. Gold particles were never observed over the paracrystalline inclusions of peroxisomes, however. Despite a close association between enlarging peroxisomes and tubular endoplasmic reticulum, uricase was not detectable in the latter. In mature nodules, labeling of uricase was limited to the large peroxisomes in uninfected cells. Small peroxisome-like bodies present in infected cells did not become labeled.Abbreviations BSA bovine serum albumin - Da dalton - ER endoplasmic reticulum - IgG immunoglobulin G  相似文献   

3.
Actin localization and function in higher plants   总被引:18,自引:0,他引:18  
Summary Two different cytochemical methods were used to study the localization of uricase (EC 1.7.3.3) and catalase (EC 1.11.1.6) in developing root nodules of soybean (Glycine max) inoculated as seeds withBradyrhizobium japonicum. One of the methods employs DAB (3,3-diaminobenzidine) and detects uricase activity indirectly by coupling it to endogenous catalase activity. The other method utilizes cerium chloride to detect uricase activity directly. These methods were modified to obtain not only a strong staining reaction but also improved ultrastructural preservation. With the indirect DAB method, intense staining indicative of both uricase and catalase activity was obtained in the enlarged peroxisomes of older uninfected cells. Similar staining was observed in enlarging peroxisomes of younger uninfected cells, and in the material of associated sacs whose bounding membranes appear to arise as distensions of the ER. The observations are discussed in relation to the controversial role of the ER in peroxisome biogenesis. Although the small peroxisome-like organelles of infected cells did not give a clearly positive reaction in the indirect DAB method, they reacted positively in the cerium chloride method, and are considered to be peroxisomes.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum  相似文献   

4.
Summary The possibility that cells in the inner cortex of determinate root nodules participate in ureide production from recently fixed N2, as do the uninfected (interstitial) cells of the infected central region, has been investigated in soybean (Glycine max) inoculated as seeds withBradyrhizobium japonicum. Like the interstitial cells, cells of the three innermost cortical layers produce enlarged peroxisomes and a meshwork of tubular ER during differentiation. These changes are most pronounced in the innermost cortical layer, are successively less so in the 2nd and 3rd layers, and are usually undetectable in more distant layers. Peroxisomes in the inner three layers are stained in the DAB (3,3-diaminobenzidine) test for uricase (EC 1.7.3.3) activity, indicative of the potential for ureide formation, but peroxisomes in more distant cortical cells are not stained. A nodulespecific uricase also is demonstrable in the inner three cortical layers by immunogold labeling enhanced with silver for visualization in the light microscope. The observations suggest that with respect to ureide production the cells of the inner layers of the cortex are functionally similar to the interstitial cells of the infected region despite the apparent distinctiveness of the two regions anatomically.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum  相似文献   

5.
Hans Meier  J. S. Grant Reid 《Planta》1977,133(3):243-248
The mode of deposition (secretion) of galactomannan in the cells of the seed endosperm ofTrigonella foenum-graecum has been studied by electron microscopy. In cells which are just beginning to secrete galactomannan there are stacks of rough endoplasmic reticulum (ER). The intracisternal space (containing the enchylema) of the rough ER then swells, becomes vacuolated and forms a voluminous network, with pockets of cytoplasm entrapped within poculiform rough ER. The enchylema contains material which reacts with periodate-thiocarbohydrazidesilver proteinate in a very similar manner to the galactomannan already deposited in the cell wall. It appears that the galactomannan is formed in the intracisternal space of the rough endoplasmic reticulum and then expelled outside the plasmalemma. This mode of deposition contrasts with that of other plant cell wall polysaccharides whose secretion is mediated by Golgi vesicles.Abbreviation ER endoplasmic reticulum This is part six in a series of papers dealing with galactomannan metabolism. Part five: Planta133, 219–222 (1977)  相似文献   

6.
Y. Kaneko  E. H. Newcomb 《Protoplasma》1990,157(1-3):102-111
Summary Black locust (Robinia pseudoacacia L.), a member of the legume tribe Robinieae, has indeterminate root nodules and is primarily an amide exporter. However, in greenhouse-grown seedlings inoculated with rhizobia, ureide-N comprises approximately 8% of the total soluble-N in the xylem sap. Ultrastructurally, young interstitial cells (i.e., uninfected cells in the infected region near the nodule meristem) develop enlarged peroxisomes and abundant tubular ER, properties heretofore found to be characteristic only of members of the Phaseoleae, which have determinate nodules and are exporters principally of ureides. Many of the peroxisomes in the interstitial cells of black locust nodules react strongly for uricase (EC 1.7.3.3) activity in a cytochemical test employing diaminobenzidine, but some of the peroxisomes, particularly those farther back from the meristem, react weakly or not at all, even though enlarged. The ultrastructural specializations of the interstitial cells seem disproportionately large in comparison to the relatively low levels of ureides in the xylem transport stream. We suggest that similar specialization of some of the interstitial cells might be found in other legumes that export low amounts of ureides.Abbreviations DAB 3,3'diaminobenzidine - ER endoplasmic reticulum Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

7.
The ultrastructure of the endoplasmic reticulum (ER) in storage parenchyma cells in the cotyledons of mung beans (Vigna radiata L.) was examined during germination and seedling growth. Two different methods were used to visualize the ER: thin (0.08 m) sections of tissue fixed in formaldehyde and glutaraldehyde and post-fixed with osmium tetroxide, and thick (1 m) sections of tissue fixed in buffered aldehyde and post-fixed with zinc iodide-osmium tetroxide (ZIO). Changes in relative amounts of ER were quantified by morphometry (stereology).The ER occurs in two forms: a cisternal form with associated ribosomes which can be seen at all stages from imbibition to cotyledon senescence, and a tubular form which initially has associated ribosomes. Stereoscopic images of thick sections of cotyledons of 2-day-old seedlings show that the tubular ER consists of a three-dimensional array of interconnecting tubules which have numerous connections with the cisternal ER. The network of tubules and cisternae extends throughout the cytoplasm enveloping the protein bodies. Germination and seedling growth are accompanied by a reduction in the total volume occupied by the ER. This reduction is the result of a preferential loss of tubular ER and occurs largely before protein mobilization. Cisternal ER decreases during the first 48 h of imbibition and seedling growth, but storage cells subsequently show an increase in cisternal ER just prior to and during the period of protein mobilization. Cisternal ER remains conspicuous during the last phase of reserve mobilization when starch is broken down and the cells are starting autophagy.Abbreviations ER endoplasmic reticulum - ZIO zinc iodide-osmium tetroxide This is the second in a series of papers on the endoplasmic reticulum of mung bean cotyledons. The first paper is referenced herein as Gilkes and Chrispeels (1980)  相似文献   

8.
Endoplasmic reticulum in the root protophloem of Nymphoides peltata (S.G. Gmel.) O. Kuntze changes form as sieve elements differentiate. In immature sieve elements the individual endoplasmic reticulum (ER) cisternae form large irregular aggregates in the cytoplasm. In older immature sieve elements the ER aggregates are more ordered and membranes in them are convoluted. Although convoluted ER predominates in immature sieve elements the ER of the mature sieve elements consists mainly of flattened stacks of ER cisternae. Some of these stacks of ER may be derived from the existing convoluted ER. Crystalline fibrils first appear in the cytoplasm of the sieve element when the ER starts to aggregate. The crystalline fibrils move to the parietal layer of the sieve element along with the aggregates of ER. A possible ontogenetic relationship between ER and crystalline fibrils is discussed.Abbreviation ER endoplasmic reticulum  相似文献   

9.
Bacteroids in ineffective (nitrogenase negative) nodules of Glycine max, infected with Rhizobium japonicum 61-A-24, as compared to those in effective nodules are characterized by reduced specific activities of alanine dehydrogenase to 15%, of 3-hydroxybutyrate dehydrogenase to 50%, and an increase of glutamine synthetase to 400%. In the plant cytoplasm of ineffective nodules, glutamine synthetase activity is reduced to 10–30%, glutamate dehydrogenase to 50–70%, and the aspartate aminotransferase and alanine aminotransferase are enhanced to 120–200%, depending on the age of the nodules. The total pool of soluble amino acids is reduced to 52 mol per g nodule fresh weight, as compared to 186 mol in effective nodules, with a replacement of asparagine (42 mol% of the amino acids) by an unknown amino compound. This compound is absent in nitrogenase, repressed and derepressed, free-living Rhizobium japonicum cells and in the uninfected root tissue. In nitrogenase derepressed, as compared to the repressed free-living cells of Rhizobium japonicum 61-A-101, arginine shows the most obvious change with a reduction to less than one tenth. The ultrastructure of the ineffective nodule is different from the effective organ even in the early stages. The membrane envelopes of the infection vacuoles are decomposing in heavily infected cells within 18 to 20 d after infection. In lightly infected cells very large vacuoles develop with only a few bacteroids inside. No close associations of cristae-rich mitochondria with amyloplasts are observed as in effective nodules. The uninfected cells keep their large starch granules even 40 d after infection. Some poly--hydroxybutyrate accumulation in the bacteroids is observed but only in the early stages, and it is almost absent in old nodules (40 d). At this age the infected cells are obviously compressed by uninfected cells, whereas in effective nodules with nitrogenase activity and leghaemoglobin formation, the infected cells have a much higher osmotic pressure than the neighbouring uninfected cells.Abbreviations PHBA poly--hydroxybutyric acid Prof. Dr. A. Pirson on the occasion of his 70th birthday  相似文献   

10.
Collings DA  Harper JD  Vaughn KC 《Planta》2003,218(2):204-216
We have investigated changes in the distribution of peroxisomes through the cell cycle in onion (Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek (Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the -oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.Abbreviations BDM 2,3-butanedione monoxime - DAPI 4,6-diamidino-2-phenylindole - ER endoplasmic reticulum - GFP green fluorescent protein  相似文献   

11.
Summary In tip-growingChara rhizoids, the in-vivo saltatory movements of Golgi vesicles were recorded. The movements in radial direction back and forth between the ER aggregate and the plasma membrane occurred three times more often than movements passing the ER aggregate tangentially. The mean velocity of the class of Golgi vesicles observed (0.4–1 m in diameter) was approx. 0.3 m/s. Higher speed of 1–1.5 m/s occurred only in radial directions. Possibly, the ER aggregate is involved in guidance of the Golgi vesicles.Abbreviations DIC differential interference contrast - ER endoplasmic reticulum - OsFeCN osmium tetroxide-potassium ferricyanide Dedicated to the memory of Professor O. Kiermayer  相似文献   

12.
N. Harris  K. J. Oparka 《Protoplasma》1983,114(1-2):93-102
Summary The connections and structural inter-relations of dictyosomes and endoplasmic reticulum (ER) in cotyledons of germinating mung beans were studied using thick (0.3 m) sections of aldehyde fixed, zinc iodide-osmium tetroxide (ZIO) impregnated tissue. The sections were examined by conventional (100 kV), rather than high voltage, transmission electron microscopy.Continuity of cisternal ER with tubular ER was confirmed and a direct connection of tubular ER totrans dictyosome cisternae was observed as were GERL networks associated withtrans dictyosome cisternae.Dictyosomes also gave rise to an extensive system of very fine tubules (10–20 nm diam) which have not been described previously in plant tissue. These tubules, which originated at thetrans dictyosome face, extended throughout the cytoplasm and were found connected to cisternal ER and tubular ER.The implications of these observations are discussed with regard to present ideas concerning endomembrane flow and protein sorting by the Golgi apparatus.  相似文献   

13.
Citrus limon has a wet stigma which can be divided in two zones: a glandular superficial one formed by papillae, and a non-glandular one formed by parenchymatic cells. The stigmatic exudate is produced by the papillae after the latter have reached their ultimate size. The papillae of the mature pistil are of varying size and composition. Both the unicellular and multicellular ones are present. The cells at the base of the papillae are rich in cytoplasm, whereas the tip cells are vacuolated. Histochemical analysis has shown that the exudate of Citrus is composed of lipids, polysaccharides, and proteins. Our results indicate that the lipidic component is produced and secreted first, followed by production and secretion of the polysaccharidic component. The lipidic component of the exudate is produced in the basal papillae cells and accumulates as droplets in dilated parts of the smooth endoplasmic reticulum (SER). Subsequently the lipid droplets are transported to the plasma membrane, and transferred by the latter into the cell walls. Then the exudate component is accumulated in the intercellular spaces and in the middle lamellar regions of the walls. Subsequently, the polysaccharidic component of the exudate is produced and secreted by the tip cells of the papillae.Abbreviations RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

14.
Ultrastructural localization of peroxidatic activity was investigated in the chytrid Entophlyctis variabilis with the 3,3-diaminobenzidine (DAB) cytochemical prodedure. The subcellular distribution of reaction product varied with changes in pH of the DAB medium and with the developmental stage of the fungus. Incubations in the DAB reaction medium at pH 9.2 produced an electron dense reaction product within single membrane bounded organelles which resembled microbodies but which varied in shapes from elongate to oval. At this pH the cell wall also stained darkly. When the pH of the DAB medium was lowered to pH 8.2 or 7.0, DAB oxidation product was localized within mitochondrial cristae as well as in microbodies and zoosporangial walls. As soon as zoospores were completely cleaved out of the zoosporangial cytoplasm, endoplasmic reticulum (ER) also stained. When the wall appeared around the encysted zoospore, ER staining was no longer found. The influence of the catalase inhibitor, aminotriazole, and the inhibitors of heme enzymes, sodium azide and sodium cyanide, on the staining patterns within cells incubated in the DAB media indicates that microbody staining is due to both catalase and peroxidase, mitochondrial staining is due to cytochrome c, and ER staining is due to peroxidase.Abbreviations DAB 3,3-diaminobenzidine-HCl - ER endoplasmic reticulum  相似文献   

15.
Kunce  Christine M.  Trelease  Richard N.  Doman  Diane C. 《Planta》1984,161(2):156-164
Morphometric procedures were used with light and electron microscopy to examine glyoxysome number, volume, shape and distribution as well as mesophyll cell volume, in cotyledons of mature (50 d postanthesis), imbibed (5h) and germinated (24 and 37 h) cotton (Gossypium hirsutum L.) seeds. Additionally, activities of five glyoxysomal marker enzymes in cotyledon extracts were assayed at each of the above ages. Cell volume was determined from photomicrographs of Epon-embedded sections by the point-counting procedure. Analysis of variance showed that cell volume was not different among the tissue segments studied. Glyoxysomes were cytochemically stained for catalase (EC 1.11.1.6) activity with the 3,3-diaminobenzidine-tetrahydrochloride procedure. Analyses involving both phase and electron microscopy, and two separate sterologic calculations for determining the number of glyoxysomes per cell, indicate that glyoxysomes are numerous in mature seeds, persist through desiccation and imbibition, then increase dramatically in volume (seven fold) but not number (a maximum of 1.5-fold), when enzyme activities increase two to six times (depending on the enzyme). During the entire period of increase in glyoxysomal enzyme activities, no ultrastructural evidence was found for glyoxysome formation or destruction. Our data, in contrast to some proposals in the literature, indicate that cottonseed glyoxysomes form during seed maturation, then develop following seed imbibition into pleomorphic organelles by posttranslational accumulation of proteins from the cytosol and transfer of membrane components probably from the endoplasmic reticulum.Abbreviations DAB 3,3-diaminobenzidine tetrahydrochloride - DPA days postanthesis - ER endoplasmic reticulum  相似文献   

16.
B. Galatis 《Planta》1977,136(2):103-114
The temporary development of Vigna sinensis seedlings in the presence of colchicine results in the inhibition of stomata generation and the formation of numerous persistent stomatal meristemoids (P-SM) and guard cell mother cells (P-GMC). Before dividing differentially or becoming GMC, the untreated meristemoiidsundergo a preparatory differentiation, during which a synthesis of new densely ribosomal cytoplasm, an increase of nuclear size, and a detectable proliferation of all the organelles are observed. The same process appears depressed and delayed in treated meristemoids; the cells have usually undergone only part of it when they reach the C mitosis. After the inhibition of their division, the bulged meristemoids II and GMC increase further in size, synthesize new nonribosomal cytoplasm, and start vacuolating slowly. The plastids also increase in size, change in shape, and become able to synthesize large quantities of starch. The cells retain a ribosomal cytoplasm, rough ER membranes, and active dictyosomes for a long time. At the advanced stages of differentiation, the microtubules reappear in the cells even when the plant remains under colchicine treatment. When mature, the P-GMC and P-SM are quite similar to the guard cells and possess considerably thickened periclinal walls, numerous mitochondria, and small vacuoles, while the nucleus, the plastids, and the cytoplasm occupy significant parts of the cell volume. In the epidermis displaying open stomata in light, significant K+ quantities are detectable in guard cells and P-GMC or P-SM, while they are almost absent from their surrounding cells. When the stomata close in darkness, K+ is accumulated primarily in the subsidiary or typical epidermal cells surrounding these idioblasts and only minimally inside them. Besides, the P-GMC and P-SM, like the guard cells, retain the starch for a long time and build up considerable starch quantities from exogenously supplied sugars.Abbreviations P-GMC persistent guard cell mother cell - PSM persistent stomatal meristemoid - ER endoplasmic reticulum  相似文献   

17.
The ultrastructure of the storage parenchyma cells of the cotyledons of developing bean (Phaseolus vulgaris L.) seeds was examined in ultrathin frozen sections of specimens fixed in a mixture of glutaraldehyde, formaldehyde and acrolein, infused with 1 M sucrose, and sectioned at-80° C. Ultrastructural preservation was excellent and the various subcellular organelles could readily be identified in sections which had been stained with uranyl acetate and embedded in Carbowax and methylcellulose. The cells contained large protein bodies, numerous long endoplasmic reticulum cisternae, mitochondria, dictyosomes, and electron-dense vesicles ranging in size from 0.2 to 1.0 m. Indirect immunolabelling using rabbit immunoglobulin G against purified phaseolin (7S reserve protein), and ferritin-conjugated goat immunoglobulin G against rabbit immunoglobulin G was used to localize phaseolin. With a concentration of 0.1 mg/ml of anti-phaseolin immunoglobin G, heavy labeling with ferritin particles was observed ober the protein bodies, the cisternae of the endoplasmic reticulum, and the vesicles. The same structures were lightly labeled when the concentration of the primary antigen was 0.02 mg/ml. Ferritin particles were also found over the Golgi bodies. The absence of ferritin particles from other organelles such as mitochondria and from areas of cytoplasm devoid of organelles indicated the specificity of the staining, especially at the lower concentration of anti-phaseolin immunoglobulin G.Abbreviations ER endoplasmic reticulum - IgG immunoglobulin G  相似文献   

18.
Summary The filamentous brown algaHincksia hincksiae can be infected by a large icosahedral double-stranded DNA virus (HincV-1). The virus shows extended latency and is replicated only in cells homologous to sporangia. Virus formation was studied by transmission electron microscopy, DAPI staining, and -tubulin immunofluorescence. Inhibition of cytokineses results in multinucleate cells, which are the first indication of virus replication in productive cells; the microtubular cytoskeleton does not seem to be affected by the virus. Replication of viral DNA begins in the nuclei, which increase in size and eventually disintegrate. Virus assembly takes place in a mixed nucleo-/cytoplasm. Capsids bud from cisternae, which are interpreted as modified endoplasmic reticulum aggregated to virus assembly centres. The internal membranous component of the virus is thus derived from the endoplasmic reticulum. The particles are empty (electron translucent) when assembled, and the nucleoprotein core seems to be packaged subsequently through an opening in the capsid. A number of fine structural features not previously reported from brown algae and related to virus formation are described. Our results on Hincksia hincksiae virus are compared with observations made on various other icosahedral DNA viruses infecting eukaryotic algae and animals.Abbreviations ASFV African swine fever virus - BSA bovine serum albumin - DAPI 4,6-diamidino-phenylindole - dsDNA double-stranded DNA - EGTA ethyleneglycol-bis-(b-amino-ethyl ether)-N,N-tetraacetic acid - ER endoplasmic reticulum - FV-3 frog virus 3 - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - HincV-1 Hincksia hincksiae virus type 1 - PBCV-1 Paramecium bursaria Chlorella virus 1 - PBS phosphate-buffered saline - rER rough endoplasmic reticulum - TBS Tris-buffered saline Tris tris-(hydroxymethyl)-aminomethane - VAC virus assembly centre - VLP virus-like particle - VPC virus-producing cell  相似文献   

19.
F. Grolig 《Protoplasma》1990,155(1-3):29-42
Summary Organelle transport in the cortical cytoplasm of interphaseSpirogyra crassa cells was investigated in vivo by real-time video-enhanced DIC microscopy. Four classes of particles with different temporal pattern of movement shared the same tracks, which by staining with rhodamine phalloidine and reversible inhibition of organelle transport by cytochalasin D were identified as bundles of actin filaments. The most intriguing type of movement was revealed by a tubular organelle resembling elements of the endoplasmic reticulum. Elements of this organelle showed scarcely any net translocation during interphase, so that movement appeared rather agitational. In contrast to an immobile, polygonal network of endoplasmic reticulum underneath the plasmalemma, the tubular organelle did not stain in vivo by 3,3-dihexyloxacarbocyanine iodide (DiOC).Abbreviations DIC differential interference contrast - DiOC 3,3-dihexyloxacarbocyanine iodide - ER endoplasmic reticulum - MF microfilament (bundle of actin filaments) - MT microtubule - RLP rhodamine(-labeled) phalloidin  相似文献   

20.
Summary The ultrastructural organization of the cortical cytoplasm has been examined in caulonemata, branches and buds of the mossFunaria hygrometrica, which were prepared by rapid freeze-fixation and freeze-substitution (FS). The same structural components occur in the cortex of all three cell types: microtubules (MTs), endoplasmic reticulum (ER), coated and uncoated vesicles, coated pits, and dictyosomes. However, the configuration and density of the cortical ER varies between the three. Caulonemata have an open, polygonal network of ER associated with long MTs oriented mostly parallel to the length of the cell. Lamellar ER, covered with polysomes, is interspersed in the network. Branches have a more tightly arranged ER network, at places occurring in a thick layer, and occasional polysome-decorated lamellae. MTs, which extend to the tip of the branch, are oriented mainly parallel to the cell's long axis and are associated with the cortical ER. Buds have the tightest ER network, which is frequently arranged in a thick layer. Tubules in the polygonal ER of buds are densely covered with ribosomes, whereas tubules in the ER network of caulonemata and branches range from nearly smooth to moderately rough. Closely-spaced ER lamellae, with many polysomes, occur in some buds. The MTs of buds extend into the apical dome and are associated with the cortical ER, but are more randomly oriented than in caulonemata or branches. Close appositions between the ER and PM are observed in all three cells, but are more frequent in buds.Abbreviations DiOC6(3) 3,3-dihexyloxacarbocyanine iodide - ER endoplasmic reticulum - FS freeze-substitution - MT microtubule - MF microfilament - PM plasma membrane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号