首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A gene bank of Staphylococcus aureus strain Cowan I was established using an E. coli HB101/pBR327 host-vector system. Recombinants expressing staphylococcal protein A (SPA) were detected using an IgG-binding assay. A 3.2 Kb DNA fragment directing the synthesis of SPA in E. coli was identified. SPA produced by E. coli was characterised in minicells and by Western blotting and double diffusion experiments.  相似文献   

3.
Restriction fragments of DNA from bacteriophage S phi-C of Staphylococcus aureus which carries the gene for staphylokinase, one of the plasminogen activators, were cloned onto plasmid pBR322. Recombinant plasmids carrying the 2.5 kilobase pair segment of S phi-C DNA confer on Escherichia coli cells the capacity to synthesize staphylokinase. The enzyme is synthesized in amounts comparable to that found in S. aureus, and irrespective of the orientation of cloned fragments and their insertion site on pBR322. The active enzyme produced by E. coli cells is preferentially recovered from the periplasmic space and in part excreted into the culture medium. It is indistinguishable from the enzyme produced by S. aureus in molecular weight, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and in antigenicity, as determined by the micro-Ouchterlony precipitation test.  相似文献   

4.
Gene ent-A has been cloned on phage vector pSL5 with the use of the gene library of S. aureus FR1722(H). It is located within DNA fragment Hind III having 2,500 nucleotide pairs.  相似文献   

5.
The important food-borne pathogen Staphylococcus aureus is distinguished by its ability to grow at low water activity values. Previous work in our laboratory and by others has revealed that proline accumulation via transport is an important osmoregulatory strategy employed by this bacterium. Furthermore, proline uptake by this bacterium has been shown to be mediated by two distinct transport systems: a high-affinity system and a low-affinity system (J.-H. Bae, and K. J. Miller, Appl. Environ. Microbiol. 58:471-475, 1992; D. E. Townsend and B. J. Wilkinson, J. Bacteriol. 174:2702-2710, 1992). In the present study, we report the cloning of the high-affinity proline transport system of S. aureus by functional expression in an Escherichia coli host. The sequence of the staphylococcal proline permease gene was predicted to encode a protein of 497 amino acids which shares 49% identity with the PutP high-affinity proline permease of E. coli. Analysis of hydropathy also indicated a common overall structure for these proteins.  相似文献   

6.
The structural gene for beta-lactamase in the Staphylococcus aureus plasmid pI258 was cloned into a Staphylococcus aureus-Bacillus subtilis-Escherichia coli shuttle vector, pWN101, and the nucleotide sequence of the gene was determined. pWN101 was structurally stable and the beta-lactamase gene was expressed efficiently from its native promoter and ribosome-binding site in all three hosts.  相似文献   

7.
8.
9.
V8 protease, a member of the glutamyl endopeptidase I family, of Staphylococcus aureus V8 strain (GluV8) is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. In this study, an Escherichia coli expression system for GluV8, as well as its homologue from Staphylococcus epidermidis (GluSE), was developed, and the roles of the prosegments and two specific amino acid residues, Val69 and Ser237, were investigated. C-terminal His(6)-tagged proGluSE was successfully expressed from the full-length sequence as a soluble form. By contrast, GluV8 was poorly expressed by the system as a result of autodegradation; however, it was efficiently obtained by swapping its preprosegment with that of GluSE, or by the substitution of four residues in the GluV8 prosequence with those of GluSE. The purified proGluV8 was converted to the mature form in vitro by thermolysin treatment. The prosegment was essential for the suppression of proteolytic activity, as well as for the correct folding of GluV8, indicating its role as an intramolecular chaperone. Furthermore, the four amino acid residues at the C-terminus of the prosegment were sufficient for both of these roles. In vitro mutagenesis revealed that Ser237 was essential for proteolytic activity, and that Val69 was indispensable for the precise cleavage by thermolysin and was involved in the proteolytic reaction itself. This is the first study to express quantitatively GluV8 in E. coli, and to demonstrate explicitly the intramolecular chaperone activity of the prosegment of glutamyl endopeptidase I.  相似文献   

10.
A series of mutants of Escherichia coli, combining defects in either of the two phosphate transport systems with defects in one or more of the potassium transport systems, was used to study the nature of the previously observed obligatory requirement for each one of these ions in the transport of the other. The results show that no pair of systems is obligatorily linked, and that either ion can be transported by any one of its systems, provided that a means of entry for the other ion is available. Furthermore, in the total absence of Pi, K+ entry accompanies the transport of other anions, such as aspartate, glutamate, sn-glycero-3-phosphate and glucose 6-phosphate. The results indicate that Pi and the other anions enter by symport with protons, and that a simultaneous K+/H+ exchange, which would serve to maintain the intracellular pH, is responsible for the observed K+ 'symport' with these anions.  相似文献   

11.
12.
HoxN, an integral membrane protein with seven transmembrane helices and a molecular mass of 33.1 kDa, is involved in high-affinity nickel transport in Alcaligenes eutrophus H16. From genetic analyses, it has been concluded that HoxN is a single-component ion carrier. To investigate this assumption, hoxN was introduced into Escherichia coli. The recombinant strain showed significantly enhanced nickel uptake in a short-interval assay. Likewise, growth in the presence of 63NiCl2 yielded a more than 15-fold-increased cellular nickel content. The HoxN-based nickel transport activity could also be demonstrated in a physiological assay: an E. coli strain coexpressing hoxN and the urease operon of Klebsiella aerogenes exhibited urease activity 10-fold greater than that in the strain lacking a functional hoxN. These results strongly suggest that HoxN is sufficient to operate as a nickel permease. Multiple sequence alignment of HoxN and four other bacterial membrane proteins implicated in nickel metabolism revealed two conserved signatures which may play a role in the nickel translocation process.  相似文献   

13.
Staphylococcus aureus produces a large number of factors thought to contribute to virulence, although the precise role of some of these individual factors is not clearly defined. To investigate whether specific virulence factors might be responsible for the selection and dominance of certain genotypes of methicillin- and multiply resistant S. aureus (MRSA), the method of subtractive hybridisation was used to identify conserved DNA sequences associated with the clinical, clonal populations of S. aureus. The findings described in this report indicate that the method of subtractive hybridisation is a valuable tool to identify clone specific virulence factors, which might be of potential as diagnostic markers and as alternative vaccine targets.  相似文献   

14.
Glucosamine- or N-acetylglucosamine-requiring mutants of Staphylococcus aureus 209P and Escherichia coli K12, which lack glucosamine-6-phosphate synthetase [2-amino-2-deoxy-D-glucose-6-phosphate ketol-isomerase (amino-transferring); EC 5.3.1.19], were isolated. Growth of these mutants on glucosamine was inhibited by glucose, but growth on N-acetylglucosamine was not. Addition of glucose to mutant cultures growing exponentially on glucosamine inhibited growth and caused death of bacteria, though chloramphenicol prevented death. Uptake of glucosamine by S. aureus and E. coli mutants was severely inhibited by glucose whereas uptake of N-acetylglucosamine was only slightly inhibited. Uptake of glucose was not inhibited by either glucosamine or N-acetylglucosamine. In glucosamine auxotrophs, glucose causes glucosamine deficiency which interrupts cell wall synthesis and results in some loss of viability in the presence of continued protein synthesis.  相似文献   

15.
Buoyant density analysis of transducing lysates derived from Staphylococcus aureus and Escherichia coli indicated that phage particles bearing plasmid determinants contain a quantity of DNA equivalent to that found in the lytic particles. Transducing particles that bear plasmid determinants smaller than viral DNA must therefore contain a quantity of DNA in excess of a single plasmid genome. In the E. coli P1vir system, a dependence upon host-mediated recombination for the transduction of small plasmids, but not for large R factors or chromosomal genes, was observed. However, no evidence for the involvement of such functions in the transduction of S. aureus plasmids was obtained. Although the origin of the additional DNA in plasmid transducing particles has not been identified, circumstantial evidence has been presented in the staphylococcal system indicating that transducing particles carrying a small tetracycline plasmid are not formed by the wrapping of multiple copies of this plasmid DNA.  相似文献   

16.
Osmoregulation by potassium transport in Escherichia coli   总被引:14,自引:0,他引:14  
Abstract Cell turgor pressure determines the extent of K+ accumulation by Escherichia coli cells. K+ influx is mediated both by a constitutive system with a low affinity for K+ (Trk) and by an inducible high affinity system (Kdp). K+ efflux is controlled by as yet unidentified but independent systems. Cell K+ concentration may be the link between growth in media of high osmolarity and the concomitant accumulation of compatible solutes such as betaine.  相似文献   

17.
Cation transport in Escherichia coli. IX. Regulation of K transport   总被引:16,自引:0,他引:16       下载免费PDF全文
Kinetics of K exchange in the steady state and of net K uptake after osmotic upshock are reported for the four K transport systems of Escherichia coli: Kdp, TrkA, TrkD, and TrkF. Energy requirements for K exchange are reported for the Kdp and TrkA systems. For each system, kinetics of these two modes of K transport differ from those for net K uptake by K-depleted cells (Rhoads, D. B. F.B. Walters, and W. Epstein. 1976. J. Gen. Physiol. 67:325-341). The TrkA and TrkD systems are inhibited by high intracellular K, the TrkF system is stimulated by intracellular K, whereas the Kdp system is inhibited by external K when intracellular K is high. All four systems mediate net K uptake in response to osmotic upshock. Exchange by the Kdp and TrkA systems requires ATP but is not dependent on the protonmotive force. Energy requirements for the Kdp system are thus identical whether measured as net K uptake or K exchange, whereas the TrkA system differs in that it is dependent on the protonmotive force only for net K uptake. We suggest that in both the Kpd and TrkA systems formation of a phosphorylated intermediate is necessary for all K transport, although exchange transport may not consume energy. The protonmotive-force dependence of the TrkA system is interpreted as a regulatory influence, limiting this system to exchange except when the protonmotive force is high.  相似文献   

18.
The membrane potential and pH gradient developed across the plasma membranes of whole cells of Staphylococcus aureus and spheroplasts of Escherichia coli were estimated. The distributions of potassium ions in the presence of valinomycin and the pH gradient across the membrane were determined from the changes in pK and pH observed in the external medium during transition from the energized respiring state to the de-engerized resting condition. The protonmotive force in respiring cells was estimated at 211 mV for S. aureus and 230 mV for E. coli at external pH values of approximately 6.5. The adequacy of these protonmotive forces as a driving force for substrate accumulation or adenosine 5'-triphosphate synthesis is discussed.  相似文献   

19.
20.
A K+ transport ATPase in Escherichia coli.   总被引:4,自引:0,他引:4  
A K+ -stimulated ATPase in membranes of Escherichia coli has been identified as an activity of the Kdp system, and ATP-driven K+ transport system. Three characteristics support association of the ATPase with the Kdp system: (i) ATPase and Kdp transport are both repressed by growth in media containing high concentrations of K+; (ii) the ATPase and Kdp system accept only K+ as substrate, neither requires Na+ nor accepts Rb+ as a substrate; (iii) the affinity of the ATPase and that of th Kdp system for K+ is similar and is altered by mutations in the structural genes of the Kdp system. Discovery of an ATPase associated with a bacterial transport system suggests functional similarities with the ATP-driven transport systems of animal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号