首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5,10-Methylenetetrahydrofolate dehydrogenase (MTD) catalyzes the reversible oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate. This reaction is critical for the supply of one-carbon units at the required oxidation states for the synthesis of purines and dTMP. For most MTDs, dehydrogenase activity is co-located with a methenyl-THF cyclohydrolase activity as part of bifunctional or trifunctional enzyme. The yeast Saccharomyces cerevisiae contains a monofunctional NAD(+)-dependent 5,10-methylenetetrahydrofolate dehydrogenase (yMTD). Kinetic, crystallographic, and mutagenesis studies were conducted to identify critical residues in order to gain further insight into the reaction mechanism of this enzyme and its apparent lack of cyclohydrolase activity. Hydride transfer was found to be rate-limiting for the oxidation of methylenetetrahydrofolate by kinetic isotope experiments (V(H)/V(D) = 3.3), and the facial selectivity of the hydride transfer to NAD(+) was determined to be Pro-R (A-specific). Model building based on the previously solved structure of yMTD with bound NAD cofactor suggested a possible role for three conserved amino acids in substrate binding or catalysis: Glu121, Cys150, and Thr151. Steady-state kinetic measurements of mutant enzymes demonstrated that Glu121 and Cys150 were essential for dehydrogenase activity, whereas Thr151 allowed some substitution. Our results are consistent with a key role for Glu121 in correctly binding the folate substrate; however, the exact role of C150 is unclear. Single mutants Thr57Lys and Tyr98Gln and double mutant T57K/Y98Q were prepared to test the hypothesis that the lack of cyclohydrolase activity in yMTD was due to the substitution of a conserved Lys/Gln pair found in bifunctional MTDs. Each mutant retained dehydrogenase activity, but no cyclohydrolase activity was detected.  相似文献   

2.
Post-translational modifications (PTMs) of histones play important roles in regulating the structure and function of chromatin in eukaryotes. Although histone PTMs were considered to mainly occur at the N-terminal tails of histones, recent studies have revealed that PTMs also exist in the histone-fold domains, which are commonly shared among the core histones H2A, H2B, H3, and H4. The lysine residue is a major target for histone PTM, and the lysine to glutamine (KQ) substitution is known to mimic the acetylated states of specific histone lysine residues in vivo. Human histones H3 and H4 contain 11 lysine residues in their histone-fold domains (five for H3 and six for H4), and eight of these lysine residues are known to be targets for acetylation. In the present study, we prepared 11 mutant nucleosomes, in which each of the lysine residues of the H3 and H4 histone-fold domains was replaced by glutamine: H3 K56Q, H3 K64Q, H3 K79Q, H3 K115Q, H3 K122Q, H4 K31Q, H4 K44Q, H4 K59Q, H4 K77Q, H4 K79Q, and H4 K91Q. The crystal structures of these mutant nucleosomes were determined at 2.4-3.5 ? resolutions. Some of these amino acid substitutions altered the local protein-DNA interactions and the interactions between amino acid residues within the nucleosome. Interestingly, the C-terminal region of H2A was significantly disordered in the nucleosome containing H4 K44Q. These results provide an important structural basis for understanding how histone modifications and mutations affect chromatin structure and function.  相似文献   

3.
Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme.  相似文献   

4.
Enzymes involved in tetrahydrofolate metabolism are of particular pharmaceutical interest, as their function is crucial for amino acid and DNA biosynthesis. The crystal structure of the human cytosolic methylenetetrahydrofolate dehydrogenase/cyclohydrolase (DC301) domain of a trifunctional enzyme has been determined previously with a bound NADP cofactor. While the substrate binding site was identified to be localized in a deep and rather hydrophobic cleft at the interface between two protein domains, the unambiguous assignment of catalytic residues was not possible. We succeeded in determining the crystal structures of three ternary DC301/NADP/inhibitor complexes. Investigation of these structures followed by site-directed mutagenesis studies allowed identification of the amino acids involved in catalysis by both enzyme activities. The inhibitors bind close to Lys56 and Tyr52, residues of a strictly conserved motif for active sites in dehydrogenases. While Lys56 is in a good position for chemical interaction with the substrate analogue, Tyr52 was found stacking against the inhibitors' aromatic rings and hence seems to be more important for proper positioning of the ligand than for catalysis. Also, Ser49 and/or Cys147 were found to possibly act as an activator for water in the cyclohydrolase step. These and the other residues (Gln100 and Asp125), with which contacts are made, are strictly conserved in THF dehydrogenases. On the basis of structural and mutagenesis data, we propose a reaction mechanism for both activities, the dehydrogenase and the cyclohydrolase.  相似文献   

5.
The enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate in an NADP(+)-dependent dehydrogenase reaction or an NADP(+)-independent hydrolase reaction. The hydrolase reaction occurs in a 310-amino acid long amino-terminal domain of FDH (N(t)-FDH), whereas the dehydrogenase reaction requires the full-length enzyme. The amino-terminal domain of FDH shares some sequence identity with several other enzymes utilizing 10-formyl-THF as a substrate. These enzymes have two strictly conserved residues, aspartate and histidine, in the putative catalytic center. We have shown recently that the conserved aspartate is involved in FDH catalysis. In the present work we studied the role of the conserved histidine, His(106), in FDH function. Site-directed mutagenesis experiments showed that replacement of the histidine with alanine, asparagine, aspartate, glutamate, glutamine, or arginine in N(t)-FDH resulted in expression of insoluble proteins. Replacement of the histidine with another positively charged residue, lysine, produced a soluble mutant with no hydrolase activity. The insoluble mutants refolded from inclusion bodies adopted a conformation inherent to the wild-type N(t)-FDH, but they did not exhibit any hydrolase activity. Substitution of alanine for three non-conserved histidines located close to the conserved one did not reveal any significant changes in the hydrolase activity of N(t)-FDH. Expressed full-length FDH with the substitution of lysine for the His(106) completely lost both the hydrolase and dehydrogenase activities. Thus, our study showed that His(106), besides being an important structural residue, is also directly involved in both the hydrolase and dehydrogenase mechanisms of FDH. Modeling of the putative hydrolase catalytic center/folate-binding site suggested that the catalytic residues, aspartate and histidine, are unlikely to be adjacent to the catalytic cysteine in the aldehyde dehydrogenase catalytic center. We hypothesize that 10-formyl-THF dehydrogenase reaction is not an independent reaction but is a combination of hydrolase and aldehyde dehydrogenase reactions.  相似文献   

6.
The role of three histidine residues (His205, His296 and His303) and Asp259, important for the catalysis of NAD+-specific D-lactate dehydrogenase, was investigated using site-directed mutagenesis. None of these residues is presumed to be involved in coenzyme binding because Km for NADH remained essentially unchanged for all the mutant enzymes. Replacement of His205 with lysine resulted in a 125-fold reduction in kcat and a slight lowering of the Km value for pyruvate. D259N mutant showed a 56-fold reduction in kcat and a fivefold lowering of Km. The enzymatic activity profile shifted towards acidic pH by approximately 2 units. The H303K mutation produced no significant change in kcat values, although Km for pyruvate increased fourfold. Substitution of His296 with lysine produced no significant change in kcat values or in Km for substrate. The results obtained suggest that His205 and Asp259 play an important role in catalysis, whereas His303 does not. This corroborates structural information available for some members of the D-specific dehydrogenases family. The catalytic His296, proposed from structural studies to be the active site acid/base catalyst, is not invariant. Its function can be accomplished by lysine and this has significant implications for the enzymatic mechanism.  相似文献   

7.
Human UDP-glucose dehydrogenase (UGDH) is a homohexameric enzyme that catalyzes two successive oxidations of UDP-glucose to yield UDP-glucuronic acid, an essential precursor for matrix polysaccharide and proteoglycan synthesis. We previously used crystal coordinates for Streptococcus pyogenes UGDH to generate a model of the human enzyme active site. In the studies reported here, we have used this model to identify three putative active site residues: lysine 220, aspartate 280, and lysine 339. Each residue was site-specifically mutagenized to evaluate its importance for catalytic activity and maintenance of hexameric quaternary structure. Alteration of lysine 220 to alanine, histidine, or arginine significantly impaired enzyme function. Assaying activity over longer time courses revealed a plateau after reduction of a single equivalent of NAD+ in the alanine and histidine mutants, whereas turnover continued in the arginine mutant. Thus, one role of this lysine may be to stabilize anionic transition states during substrate conversion. Mutation of aspartate 280 to asparagine was also severely detrimental to catalysis. The relative position of this residue within the active site and dependence of function on acidic character point toward a critical role for aspartate 280 in activation of the substrate and the catalytic cysteine. Finally, changing lysine 339 to alanine yielded the wild-type Vmax, but a 165-fold decrease in affinity for UDP-glucose. Interestingly, gel filtration of this substrate-binding mutant also determined it was a dimer, indicating that hexameric quaternary structure is not critical for catalysis. Collectively, this analysis has provided novel insights into the complex catalytic mechanism of UGDH.  相似文献   

8.
The three-dimensional structure of the dehydrogenase-cyclohydrolase bifunctional domain of the human trifunctional enzyme indicates that Arg-173 and Ser-197 are within 3 A of the 2'-phosphate of bound NADP. Site-directed mutagenesis confirms that Arg-173 is essential for efficient binding and cannot be substituted by lysine. R173A and R173K have detectable dehydrogenase activity, but the K(m) values for NADP are increased by at least 500-fold. The S197A mutant has a K(m) for NADP that is only 20-fold higher than wild-type, indicating that it plays a supporting role. Forward and reverse cyclohydrolase activities of all the mutants were unchanged, except that the reverse cyclohydrolase activity of mutants that bind NADP poorly, or lack Ser-197, cannot be stimulated by 2',5'-ADP. The 50% channeling efficiency in the forward direction is not improved by the addition of exogenous NADPH and cannot be explained by premature dissociation of the dinucleotide from the ternary complex. As well, channeling is unaffected in mutants that exhibit a wide range of dinucleotide binding. Given that dinucleotide binding is unrelated to substrate channeling efficiency in the D/C domain, we propose that the difference in forward and reverse channeling efficiencies can be explained solely by the movement of the methenylH(4)folate between two overlapping subsites to which it has different binding affinities.  相似文献   

9.
1. Juvenile hormone esterase (JHE) is a serine hydrolase selective for hydrolysis of the conjugated methyl esters of insect juvenile hormones. 2. We have investigated the mechanism of catalytic action of this enzyme by site-directed mutagenesis of the cloned enzyme and expression of the mutants in a baculovirus system. 3. A series of individual mutations of JHE were made to residues possibly involved in catalysis of juvenile hormones, and which are highly conserved in both esterases and lipases. 4. Mutation of the serine residue at position 201 to glycine (S201G), or aspartate 173 to asparagine (D173N), or histidine 446 to lysine (H446K), removed all detectable activity and these mutagenized enzymes were determined to be at least 10(6)-fold less active than wild type JHE. 5. Mutation of arginine 47 to histidine (R47H) decreased but did not abolish activity, with Km essentially unchanged at 66 nM for R47H compared to 34 nM for wild type JHE. 6. The kcat for R47H was decreased from 103 min-1 for wild type JHE to 1.9 min-1. 7. In addition, glutamate residue 332 was altered to glutamine (E332Q) and expressed in an Escherichia coli system. 8. This mutation was also found to remove all detectable activity. 9. From the results presented in this study and by comparison of JHE to other serine esterases and lipases, we predict that JHE possesses a Ser201-His446-Glu332 catalytic triad. 10. In addition, aspartate 173 and arginine 47 are essential for the efficient functioning of JHE.  相似文献   

10.
PTR1, the gene promoting MTX resistance following gene amplification or DNA transfection in Leishmania tarentolae and selected mutants, has been cloned and heavily overexpressed (>100 mg/liter) in Escherichia coli strain BL21 (DE3). Protein has been purified, essentially to homogeneity, in two steps, via ammonium sulfate precipitation and chromatography on DEAE-Trisacryl. The active proteins are tetramers and display optimal pteridine reductase activity at pH 6.0 using biopterin as substrate and NADPH as the reduced dinucleotide cofactor. 2,4-Diaminopteridine substrate analogues are strong competitive inhibitors (K(i) approximately 38 --> 3 nM) against the pterin substrate and both NADP(+) and folate are inhibitors although somewhat weaker. Dihydropteridines are poor substrates compared to the fully oxidized pteridine. Kinetic analysis affords the usual Michaelis constants and in addition shows that inhibition by NADP(+) allows the formation of ternary nonproductive complexes with folate. The kinetic results are consistent with a sequential ordered bi-bi kinetic mechanism in which first NADPH and then pteridine bind to the free enzyme. Sequence comparisons suggest that PTR1 belongs to the short-chain dehydrogenase/reductase (SDR) family containing an amino-terminal glycine-rich dinucleotide binding site plus a catalytic Y(Xaa)(3)K motif. In accord with this observation, the mutants K16A, Y37D, and R39A and the double mutants K17A:R39A and Y37D:R39A all show a two- to threefold lower binding affinity for NADPH and exhibit low or zero activity. Two Y(Xaa)(3)K regions are present in wild-type PTR1 at 152 and 194. Only Y194F gives protein with zero activity. This observation coupled with affinity labeling of PTR1 by oNADP(+) (2', 3'-dialdehyde derivative of NADP(+)) followed by NaBH(4) reduction, V8 protease digestion, and mass spectral analysis suggests that the motif participating in catalysis is that at 194. The mutation K198Q eliminates inactivation by oNADP(+) supporting the hypothesis that K198 is associated with nucleotide orientation, as has been demonstrated for similar lysine residues in other members of the SDR family.  相似文献   

11.
Mammalian mitochondrial membranes express two active but distinct carnitine palmitoyltransferases: carnitine palmitoyltransferase I (CPTI), which is malonyl coA-sensitive and detergent-labile; and carnitine palmitoyltransferase II (CPTII), which is malonyl coA-insensitive and detergent-stable. To determine the role of the highly conserved C-terminal acidic residues glutamate 487 (Glu(487)) and glutamate 500 (Glu(500)) on catalytic activity in rat liver CPTII, we separately mutated these residues to alanine, aspartate, or lysine, and the effect of the mutations on CPTII activity was determined in the Escherichia coli-expressed mutants. Substitution of Glu(487) with alanine, aspartate, or lysine resulted in almost complete loss in CPTII activity. Because a conservative substitution mutation of this residue, Glu(487) with aspartate (E487D), resulted in a 97% loss in activity, we predicted that Glu(487) would be at the active-site pocket of CPTII. The substantial loss in CPTII activity observed with the E487K mutant, along with the previously reported loss in activity observed in a child with a CPTII deficiency disease, establishes that Glu(487) is crucial for maintaining the configuration of the liver isoform of the CPTII active site. Substitution of the conserved Glu(500) in CPTII with alanine or aspartate reduced the V(max) for both substrates, suggesting that Glu(500) may be important in stabilization of the enzyme-substrate complex. A conservative substitution of Glu(500) to aspartate resulted in a significant decrease in the V(max) for the substrates. Thus, Glu(500) may play a role in substrate binding and catalysis. Our site-directed mutagenesis studies demonstrate that Glu(487) in the liver isoform of CPTII is essential for catalysis.  相似文献   

12.
Recently we reported that transglutaminase 2 (TGase 2) activates nuclear factor-kappaB (NF-kappaB) independently of I-kappaB kinase (IKK) activation, by inducing cross-linking and protein polymer formation of inhibitor of nuclear factor-kappaBalpha (I-kappaBalpha). TGase 2 catalyzes covalent isopeptide bond formation between the peptide bound-glutamine and the lysine residues. Using matrix-assisted laser desorption ionization time-of-flight mass spectra analysis of I-kappaBalpha polymers cross-linked by TGase 2, as well as synthetic peptides in an in vitro competition assay, we identified a glutamine cluster at the C terminus of I-kappaBalpha (amino acids 266-268) that appeared to play a key role in the formation of I-kappaBalpha polymers. Although there appeared to be no requirement for specific lysine residues, we found a considerably higher preference for the use of lysine residues at positions 21, 22, and 177 in TGase 2-mediated cross-linking of I-kappaBalpha. We demonstrated that synthetic peptides encompassing the glutamine cluster at amino acid positions 266-268 reversed I-kappaBalpha polymerization in vitro. Furthermore, the depletion of free I-kappaBalpha in EcR/TG cells was completely rescued in vivo by transfection of mutant I-kappaBalphas in glutamine sites (Q266G, Q267G, and Q313G) as well as in a lysine site (K177G). These findings provide additional clues into the mechanism by which TGase 2 contributes to the inflammatory process via activation of NF-kappaB.  相似文献   

13.
Vergis JM  Beardsley GP 《Biochemistry》2004,43(5):1184-1192
The bifunctional enzyme aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is responsible for catalysis of the last two steps in the de novo purine pathway. Using recently determined crystal structures of ATIC as a guide, four candidate residues, Lys66, Tyr104, Asp125, and Lys137, were identified for site-directed mutagenesis to study the cyclohydrolase activity of this bifunctional enzyme. Steady-state kinetic experiments on these mutants have shown that none of these residues are absolutely required for catalytic activity; however, they strongly influence the efficiency of the reaction. Since the FAICAR binding site is made up mostly of backbone interactions with highly conserved residues, we postulate that these conserved interactions orient FAICAR in the active site to favor the intramolecular ring closure reaction and that this reaction may be catalyzed by an orbital steering mechanism. Furthermore, it was shown that Lys137 is responsible for the increase in cyclohydrolase activity for dimeric ATIC, which was reported previously by our laboratory. From the experiments presented here, a catalytic mechanism for the cyclohydrolase activity is postulated.  相似文献   

14.
Ecto-nucleoside triphosphate diphosphohydrolase 3 (eNTPDase-3, also known as HB6 and CD39L3) is a membrane-associated ecto-apyrase. Only a few functionally significant residues have been elucidated for this enzyme, as well as for the whole family of eNTPDase enzymes. Four highly conserved regions (apyrase conserved regions, ACRs) have been identified in all the members of eNTPDase family, suggesting their importance for biological activity. In an effort to identify those amino acids important for the catalytic activity of the eNTPDase family, as well as those residues mediating substrate specificity, 11 point mutations of 7 amino acid residues in ACR1-4 of eNTPDase-3 were constructed by site-directed mutagenesis. Mutagenesis of asparagine 191 to alanine (N191A), glutamine 226 to alanine (Q226A), and arginine 67 to glycine (R67G) resulted in an increase in the rates of hydrolysis of nucleoside diphosphates relative to triphosphates. Mutagenesis of arginine 146 to proline (R146P) essentially converted the eNTPDase-3 ecto-apyrase to an ecto-ATPase (eNTPDase-2), mainly by decreasing the hydrolysis rates for nucleoside diphosphates. The Q226A mutant exhibited a change in the divalent cation requirement for nucleotidase activity relative to the wild-type and the other mutants. Mutation of glutamate 182 to aspartate (E182D) or glutamine (E182Q), and mutation of serine 224 to alanine (S224A) completely abolished enzymatic activity. We conclude that the residues corresponding to eNTPDase-3 glutamate 182 in ACR3 and serine 224 in ACR4 are essential for the enzymatic activity of eNTPDases in general, and that arginine 67, arginine 146, asparagine 191, and glutamine 226 are important for determining substrate specificity for human ecto-nucleoside triphosphate diphosphohydrolase 3.  相似文献   

15.
16.
The enzyme 10-formyltetrahydrofolate dehydrogenase (FDH) catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate in either a dehydrogenase or hydrolase reaction. The hydrolase reaction occurs in a 310-residue amino-terminal domain of FDH (N(t)-FDH), whereas the dehydrogenase reaction requires the full-length enzyme. N(t)-FDH shares some sequence identity with several 10-formyltetrahydrofolate-utilizing enzymes. All these enzymes have a strictly conserved aspartate, which is Asp(142) in the case of N(t)-FDH. Replacement of the aspartate with alanine, asparagine, glutamate, or glutamine in N(t)-FDH resulted in complete loss of hydrolase activity. All the mutants, however, were able to bind folate, although with lower affinity than wild-type N(t)-FDH. Six other aspartate residues located near the conserved Asp(142) were substituted with an alanine, and these substitutions did not result in any significant changes in the hydrolase activity. The expressed D142A mutant of the full-length enzyme completely lost both hydrolase and dehydrogenase activities. This study shows that Asp(142) is an essential residue in the enzyme mechanism for both the hydrolase and dehydrogenase reactions of FDH, suggesting that either the two catalytic centers of FDH are overlapped or the dehydrogenase reaction occurs within the hydrolase catalytic center.  相似文献   

17.
An arginine residue in loop 4 connecting beta strand 4 and alpha-helix 4 is conserved in glycoside hydrolase family 10 (GH10) xylanases. The arginine residues, Arg(204) in xylanase A from Bacillus halodurans C-125 (XynA) and Arg(196) in xylanase B from Clostridium stercorarium F9 (XynB), were replaced by glutamic acid, lysine, or glutamine residues (XynA R204E, K and Q, and XynB R196E, K and Q). The pH-k(cat)/K(m) and the pH-k(cat) relationships of these mutant enzymes were measured. The pK(e2) and pK(es2) values calculated from these curves were 8.59 and 8.29 (R204E), 8.59 and 8.10 (R204K), 8.61 and 8.19 (R204Q), 7.42 and 7.19 (R196E), 7.49 and 7.18 (R196K), and 7.86 and 7.38 (R196Q) respectively. Only the pK(es2) value of arginine derivatives was less than those of the wild types (8.49 and 9.39 [XynA] and 7.62 and 7.82 [XynB]). These results suggest that the conserved arginine residue in GH10 xylanases increases the pK(a) value of the proton donor Glu during substrate binding. The arginine residue is considered to clamp the proton donor and subsite +1 to prevent structural change during substrate binding.  相似文献   

18.
Daubner SC  Fitzpatrick PF 《Biochemistry》1999,38(14):4448-4454
The active site of tyrosine hydroxylase consists of a hydrophobic cleft with an iron atom near the bottom. Within the cleft are several charged residues which are conserved across the family of pterin-dependent hydroxylases. We have studied four of these residues, glutamates 326 and 332, aspartate 328, and arginine 316 in tyrosine hydroxylase, by site-directed substitution with alternate amino acid residues. Replacement of arginine 316 with lysine results in a protein with a Ktyr value that is at least 400-fold greater and a V/Ktyr value that is 4000-fold lower than those found in the wild-type enzyme; substitution with alanine, serine, or glutamine yields insoluble enzyme. Arginine 316 is therefore critical for the binding of tyrosine. Replacement of glutamate 326 with alanine has no effect on the KM value for tyrosine and results in a 2-fold increase in the KM value for tetrahydropterin. The Vmax for DOPA production is reduced 9-fold, and the Vmax for dihydropterin formation is reduced 4-fold. These data suggest that glutamate 326 is not directly involved in catalysis. Replacement of aspartate 328 with serine results in a 26-fold higher KM value for tyrosine, a 8-fold lower Vmax for dihydropterin formation, and a 13-fold lower Vmax for DOPA formation. These data suggest that aspartate 328 has a role in tyrosine binding. Replacement of glutamate 332 with alanine results in a 10-fold higher KM value for 6-methyltetrahydropterin with no change in the KM value for tyrosine, a 125-fold lower Vmax for DOPA formation, and an only 3.3-fold lower Vmax for tetrahydropterin oxidation. These data suggest that glutamate 332 is required for productive tetrahydropterin binding.  相似文献   

19.
A new construct carrying the hemC gene was transformed into Escherichia coli, resulting in approx. 1000-fold over-expression of hydroxymethylbilane synthase (HMBS). This construct was used to generate HMBS in which (a) Lys-55, (b) Lys-59 and (c) both Lys-55 and Lys-59 were replaced by glutamine (K55Q, K59Q and K55Q-K59Q respectively). All three modified enzymes are chromatographically separable from wild-type enzyme. Kinetic studies showed that the substitution K55Q has little effect whereas K59Q causes a 25-fold decrease in Kapp. cat./Kapp. m. Treatment of K55Q, K59Q and K55Q-K59Q separately with pyridoxal 5'-phosphate and NaBH4 resulted in incomplete and non-specific reaction with the remaining lysine residues. Pyridoxal modification of Lys-59 in the K55Q mutant caused greater enzymic inactivation than similar modification of Lys-55 in K59Q. The results in sum show that, though Lys-55 and Lys-59 may be at or near the active site, neither is indispensable for the catalytic activity of HMBS.  相似文献   

20.
The zinc-containing cytidine deaminase (CDA, EC 3.5.4.5) is a pyrimidine salvage enzyme catalyzing the hydrolytic deamination of cytidine and 2'-deoxycytidine forming uridine and 2'-deoxyuridine, respectively. Homodimeric CDA (D-CDA) and homotetrameric CDA (T-CDA) both contain one zinc ion per subunit coordinated to the catalytic water molecule. The zinc ligands in D-CDA are one histidine and two cysteine residues, whereas in T-CDA zinc is coordinated to three cysteines. Two of the zinc coordinating cysteines in T-CDA form hydrogen bonds to the conserved residue Arg56, and this residue together with the dipole moments from two alpha-helices partially neutralizes the additional negative charge in the active site, leading to a catalytic activity similar to D-CDA. Arg56 has been substituted by a glutamine (R56Q), the corresponding residue in D-CDA, an alanine (R56A), and an aspartate (R56D). Moreover, one of the zinc-liganding cysteines has been substituted by histidine to mimic D-CDA, alone (C53H) and in combination with R56Q (C53H/R56Q). R56A, R56Q, and C53H/R56Q contain the same amount of zinc as the wild-type enzyme. The zinc-binding capacity of R56D is reduced. Only R56A, R56Q, and C53H/R56Q yielded measurable CDA activity, R56A and R56Q with similar K(m) but decreased V(max) values compared to wild-type enzyme. Because of dissociation into its inactive subunits, it was impossible to determine the kinetic parameters for C53H/R56Q. R56A and C53H/R56Q display increased apparent pK(a) values compared to the wild-type enzyme and R56Q. On the basis of the structures of R56A, R56Q, and C53H/R56Q an explanation is provided of kinetic results and the apparent instability of C53H/R56Q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号