首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maturation of CD4+8- and CD4-8+ thymocytes from CD4+8+ thymocytes is dependent on the mandatory interaction of their alpha beta TCR with selecting ligands expressed on thymic epithelial cells (TE). This is referred to as positive selection. The deletion of CD4+8+ thymocytes that express autospecific TCR (negative selection) is mediated primarily by bone marrow-derived cells. Previous studies have shown that TE is relatively ineffective in mediating the deletion of CD4+8- thymocytes expressing autospecific TCR but TE can render them anergic, i.e., nonresponsive, to the self Ag. The mechanism by which anergy is induced in these cells is unknown. In this study, we used thymocytes expressing a transgenic TCR specific for the male Ag presented by H-2Db class I MHC molecules to examine how expression of the deleting ligand by TE affects thymocyte development and phenotype. The development of female TCR-transgenic thymocytes was examined in irradiated male hosts or in female hosts that had received male fetal thymic epithelial implants. It was observed that the development of transgenic-TCR+ thymocytes was affected in mice with male TE. CD4+8+ thymocytes with reduced CD8 expression and markedly enhanced transgenic TCR expression accumulated in mice with male TE. Development of CD4-8+ thymocytes was also affected in these mice in that fewer were present and they expressed an intermediate CD8 coreceptor level. These CD4-8+ thymocytes expressed a high level of the transgenic TCR, retained the ability to respond to anti-TCR antibodies, but were nonresponsive to male APC. However, the maturation of CD4+8- thymocytes, which are also derived from CD4+8+ precursor cells, was relatively unaffected. In an in vitro assay for assessing negative selection, male TE failed to delete CD4+8+ thymocytes expressing the transgenic TCR under conditions where they were efficiently deleted by male dendritic cells. Collectively these results support the conclusion that male TE was inefficient in mediating deletion. Furthermore, expression of the deleting ligand on thymic epithelium interferes with the maturation of functional male-specific T cells and results in the accumulation of CD4+8+ and CD4-8+ thymocytes expressing a lower level of the CD8 coreceptor but a high level of the transgenic TCR.  相似文献   

2.
The T cell antigen receptor (TCR)-associated invariable membrane proteins (CD3-gamma, -delta, -epsilon and -zeta) are critical to the assembly and cell surface expression of the TCR/CD3 complex and to signal transduction upon engagement of TCR with antigen. Disruption of the CD3-zeta gene by homologous recombination resulted in a structurally abnormal thymus which primarily contained CD4- CD8- and TCR/CD3very lowCD4+CD8+ cells. Spleen and lymph nodes of CD3-zeta-/- mutant mice contained a normal number and ratio of CD4+ and CD8+ single positive cells that were TCR/CD3very low. These splenocytes did not respond to antibody cross-linking or mitogenic triggering. The V beta genes of CD4-CD8- and CD4+CD8+ thymocytes and splenic T cells were productively rearranged. These data demonstrated that (i) in the absence of the CD3-zeta chain, the CD4- CD8- thymocytes could differentiate to CD4+CD8+ TCR/CD3very low thymocytes, (ii) that thymic selection might have occurred, (iii) but that the transition to CD4+CD8- and CD4-CD8+ cells took place at a very low rate. Most strikingly, intraepithelial lymphocytes (IELs) isolated from the small intestine or the colon expressed normal levels of TCR/CD3 complexes on their surface which contained Fc epsilon RI gamma homodimers. In contrast to CD3-zeta containing IELs, these cells failed to proliferate after triggering with antibody cross-linking or mitogen. In comparison to thymus-derived peripheral T cells in the spleen and lymph nodes, the preferential expression of normal levels of TCR/CD3 in intestinal IELs suggested they mature via an independent extrathymic pathway.  相似文献   

3.
It is generally accepted that the avidity of TCR for self Ag/MHC determines the fate of immature thymocytes. However, the contribution of the quantity of TCR signal to T cell selection has not been well established, particularly in vivo. To address this issue, we analyzed DO-TCR transgenic CD3zeta-deficient (DO-Tg/zetaKO) mice in which T cells have a reduced TCR on the cell surface. In DO-Tg/zetaKO mice, very few CD4 single positive (SP) thymocytes developed, indicating that the decrease in TCR signaling resulted in a failure of positive selection of DO-Tg thymocytes. Administration of the peptide Ag to DO-Tg/zetaKO mice resulted in the generation of functional CD4 SP mature thymocytes in a dose-dependent manner, and, unexpectedly, DO-Tg CD8 SP cells emerged at lower doses of Ag. TCR signal-dependent, sequential commitment from CD8(+) SP to CD4(+) SP was also shown in a class I-restricted TCR-Tg system. These in vivo analyses demonstrate that the quantity of TCR signal directly determines positive and negative selection, and further suggest that weak signal directs positively selected T cells to CD8 lineage and stronger signal to CD4 lineage.  相似文献   

4.
Immature thymocytes, which coexpress CD4 and CD8, give rise to mature CD4+CD8- and CD4-CD8+ T cells. Only those T cells that recognize self-MHC are selected to mature, a process known as positive selection. The specificity of the T cell antigen receptor (TCR) for class I or class II MHC influences the commitment to a CD4 or CD8 lineage. This may occur by a directed mechanism or by stochastic commitment followed by a selection step that allows only CD8+, class I-specific and CD4+, class II-specific cells to survive. We have generated a mouse line expressing a CD8 transgene under the control of the T cell-specific CD2 regulatory sequences. Although constitutive CD8 expression does not affect thymic selection of CD4+ cells, selection of a class I-specific TCR in the CD8 subset is substantially improved. This outcome is consistent with a model for positive selection in which selection occurs at a developmental stage in which both CD4 and CD8 are expressed, and positive selection by class I MHC generates an instructive signal that directs differentiation to a CD8 lineage.  相似文献   

5.
Developing T cells undergo distinct selection processes that determine the TCR repertoire. Positive selection involves the differentiation of immature thymocytes capable of recognizing antigens complexed with self-MHC molecules to mature T cells. Besides the central role of TCR engagement by MHC in triggering selection; the interaction of CD8 and CD4 with MHC class I and class II, respectively; is thought to be important in regulating the selection process. To study potential mechanisms involved in positive selection of CD8+ cells, we have analyzed mice expressing a unique transgenic TCR. The transgenic receptor recognizes the HY male Ag in the context of the MHC class I molecule, H2-Db. We describe that CD8 and the TCR are selectively associated in thymocytes of mice expressing the restricting MHC, but not in thymocytes of mice expressing a nonrestricting MHC. pp56lck and pp59fyn, the tyrosine kinases associated with CD8 and TCR, respectively, were found to be present in this complex in an activated form. No comparable TCR-CD4 complex formation was found in thymuses undergoing positive selection to CD8+ cells. The formation of a multimolecular complex between CD8 and TCR, in which pp56lck and pp59fyn are activated, may initiate specific signaling programs involved in the maturation of CD8+ cells.  相似文献   

6.
Previous evidence suggested that the hemopoietic-specific nuclear factor Ikaros regulates TCR signaling thresholds in mature T cells. In this study, we test the hypothesis that Ikaros also sets TCR signaling thresholds to regulate selection events and CD4 vs CD8 lineage determination in developing thymocytes. Ikaros null mice were crossed to three lines of TCR-transgenic mice, and positive selection, negative selection, and CD4 vs CD8 lineage decisions were analyzed. Mice expressing a polyclonal repertoire or a MHC class II-restricted TCR transgene exhibited enhanced positive selection toward the CD4 lineage. Moreover, in the absence of Ikaros, CD4 development can occur with decreased thresholds of TCR signaling. In addition, CD4 single-positive thymocytes were detected in MHC class I-restricted TCR-transgenic Ikaros null mice. To assess the role of Ikaros in negative selection, we analyzed deletion of T cells induced by conventional Ag or by endogenous superantigen. Surprisingly, negative selection was impaired in Ikaros null thymocytes despite evidence of high levels of TCR signal and no intrinsic defect in apoptosis ex vivo. To our knowledge, these data identify Ikaros as the first nuclear factor that plays a critical role in regulating negative selection as well as CD4 vs CD8 lineage decisions during positive selection.  相似文献   

7.
T cells bearing the alpha beta T cell receptor (TCR) can be divided into CD4+8- and CD4-8+ subsets which develop in the thymus from CD4+8+ precursors. The commitment to the CD4 and CD8 lineage depends on the binding of the alpha beta TCR to thymic major histocompatibility complex (MHC) coded class II and class I molecules, respectively. In an instructive model of lineage commitment, the binding of the alpha beta TCR, for instance to class I MHC molecules, would generate a specific signal instructing the CD4+8+ precursors to switch off the expression of the CD4 gene. In a selective model, the initial commitment, i.e. switching off the expression of either the CD4 or the CD8 gene would be a stochastic event which is then followed by a selective step rescuing only CD4+ class II and CD8+ class I specific T cells while CD4+ class I and CD8+ class II specific cells would have a very short lifespan. The selective model predicts that a CD8 transgene which is expressed in all immature and mature T cells should rescue CD4+ class I MHC specific T cells from cell death. We have performed experiments in CD8 transgenic mice which fail to support a selective model and we present data which show that the binding of the alpha beta TCR to thymic class I MHC molecules results in up-regulation of the TCR in the CD4+8+ population. Therefore, these experiments are consistent with an instructive model of lineage commitment.  相似文献   

8.
9.
TCR signals drive thymocyte development, but it remains controversial what impact, if any, the intensity of those signals have on T cell differentiation in the thymus. In this study, we assess the impact of CD8 coreceptor signal strength on positive selection and CD4/CD8 lineage choice using novel gene knockin mice in which the endogenous CD8alpha gene has been re-engineered to encode the stronger signaling cytoplasmic tail of CD4, with the re-engineered CD8alpha gene referred to as CD8.4. We found that stronger signaling CD8.4 coreceptors specifically improved the efficiency of CD8-dependent positive selection and quantitatively increased the number of MHC class I (MHC-I)-specific thymocytes signaled to differentiate into CD8+ T cells, even for thymocytes expressing a single, transgenic TCR. Importantly, however, stronger signaling CD8.4 coreceptors did not alter the CD8 lineage choice of any MHC-I-specific thymocytes, even MHC-I-specific thymocytes expressing the high-affinity F5 transgenic TCR. This study documents in a physiologic in vivo model that coreceptor signal strength alters TCR-signaling thresholds for positive selection and so is a major determinant of the CD4:CD8 ratio, but it does not influence CD4/CD8 lineage choice.  相似文献   

10.
We have used a panel of murine mAb against chicken TCR and associated molecules to study the effect of cyclosporin A (CsA) on the ontogeny of the different sublineages of T cells. After injection of CsA (20 mg/kg/day from day 0 to 20) we observed a significant suppression of the normal maturation of the TCR2 (alpha beta TCR) cells in their transition from cortical CD4+CD8+ thymocytes to the mature single positive cells in the thymus medulla. The TCR3 subpopulation, a distinct form of alpha beta-like TCR in chickens, was inhibited from initially developing within the cortex by CsA, indicating that the TCR3 subpopulation is functionally distinct from the TCR2+ cells. In contrast, the maturation and peripheral emigration of TCR1 (gamma delta TCR) cells was unaffected by CsA treatment. Mature splenic T cells sorted for either TCR1+ or TCR2+ subsets were equally sensitive to CsA blockade of Con A-stimulated mitogenesis, indicating that there is no inherent difference in CsA sensitivity between these sublineages. Furthermore, no difference was detected in the expression of class II MHC Ag in thymi of birds treated with olive oil vs CsA. Inasmuch as the mechanism of CsA action appears to involve inhibition of TCR initiated signal transduction for lymphokine synthesis, these data indicate that a similar signaling is involved in thymic repertoire selection for TCR2. The lack of an effect on TCR1 cell maturation suggests that the TCR1 repertoire may not undergo selection in the thymus as do TCR2+ cells.  相似文献   

11.
T cell activation requires Ag-specific stimulation mediated by the TCR as well as an additional stimulus provided by Ag presenting cells. On human T cells, it has been shown that antibodies to the Ag CD28 can provide a potent amplification signal for cytokine production and proliferation. Here we describe the production of a mAb to the murine homologue of CD28, and the use of this antibody to examine the function and distribution of CD28 in the mouse. Anti-murine CD28 synergizes with TCR-mediated signals to greatly enhance lymphokine production and proliferation of T cells, and the CD28 signal is not blocked by cyclosporin A. In the peripheral lymphoid organs and in the blood of the mouse, all CD4+ and CD8+ T cells express CD28. In the thymus, CD28 expression is highest on immature CD3-, CD8+ and CD4+8+ cells, and on CD4-8- cells that express alpha beta and tau delta TCR. The level of CD28 on mature CD4+ and CD8+ alpha beta TCR+ thymocytes is two- to fourfold lower than on the immature cells. The potent costimulatory function of CD28 on mature T cells, together with the high level of expression on CD4+8+ thymocytes, suggest that this costimulatory receptor might play an important role in T cell development and activation.  相似文献   

12.
Histone deacetylase 7 (HDAC7) is a T‐cell receptor (TCR) signal‐dependent regulator of differentiation that is highly expressed in CD4/CD8 double‐positive (DP) thymocytes. Here, we examine the effect of blocking TCR‐dependent nuclear export of HDAC7 during thymic selection, through expression of a signal‐resistant mutant of HDAC7 (HDAC7‐ΔP) in thymocytes. We find that HDAC7‐ΔP transgenic thymocytes exhibit a profound block in negative thymic selection, but can still undergo positive selection, resulting in the escape of autoreactive T cells into the periphery. Gene expression profiling reveals a comprehensive suppression of the negative selection‐associated gene expression programme in DP thymocytes, associated with a defect in the activation of MAP kinase pathways by TCR signals. The consequence of this block in vivo is a lethal autoimmune syndrome involving the exocrine pancreas and other abdominal organs. These experiments establish a novel molecular model of autoimmunity and cast new light on the relationship between thymic selection and immune self‐tolerance.  相似文献   

13.
The alpha beta T cell antigen receptor (TCR) that is expressed on most T lymphocytes is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER) and then transported to the plasma membrane. Expression of the TCR complex is quantitatively regulated during T cell development, with immature CD4+CD8+ thymocytes expressing only 10% of the number of surface alpha beta TCR complexes that are expressed on mature T cells. However, the molecular basis for low TCR expression in developing alpha beta T cells is unknown. In the present study we report the unexpected finding that assembly of nascent component chains into complete TCR alpha beta complexes is severely impaired in immature CD4+CD8+ thymocytes relative to their mature T cell progeny. In particular, the initial association of TCR alpha with TCR beta proteins, which occurs relatively efficiently in mature T cells, is markedly inefficient in immature CD4+CD8+ thymocytes, even for a matched pair of transgenic TCR alpha and TCR beta proteins. Inefficient formation of TCR alpha beta heterodimers in immature CD4+CD8+ thymocytes was found to result from the unique instability of nascent TCR alpha proteins within the ER of immature CD4+CD8+ thymocytes, with nascent TCR alpha proteins having a median survival time of only 15 min in CD4+CD8+ thymocytes, but > 75 min in mature T cells. Thus, these data demonstrate that stability of TCR alpha proteins within the ER is developmentally regulated and provide a molecular basis for quantitative differences in alpha beta TCR expression on immature and mature T cells. In addition, these results provide the first example of a receptor complex whose expression is quantitatively regulated during development by post-translational limitations on receptor assembly.  相似文献   

14.
The positive and negative selection of immature thymocytes that shapes the mature T cell repertoire appears to occur at an intermediate stage of development when the cells express low levels of TCR/CD3. These cells are also CD4+CD8+ and CD28+ (dull), and signals delivered by these three accessory molecules have been implicated in the selection process. We have examined the regulatory function of these accessory molecules on responses of immature thymocytes stimulated through the TCR/CD3 complex. Cross-linking CD4 or CD8 with CD3 strongly enhanced signal transduction via CD3 as assessed by protein tyrosine phosphorylation and calcium mobilization. Subsequent cell proliferation could be induced by soluble anti-CD28 mAb, which was comitogenic for cells stimulated with CD3 x CD4 or CD3 x CD8 cross-linking, but was without effect on cells stimulated with CD3 x CD3 cross-linking. A potential role for CD28 signal transduction in thymic maturation is suggested by the demonstration that the BB-1 molecule, a natural ligand for CD28, is expressed on thymic stromal cells. Taken together, our data suggest a model of thymic development in which CD4 or CD8 may enhance TCR/CD3 signaling upon coligation by an MHC molecule. If the CD28 surface receptor is simultaneously stimulated by a BB-1 expressing stromal cell, this set of interactions could lead to proliferation and positive selection. In the absence of CD28 stimulation the enhanced TCR/CD3 signals might lead to apoptosis and negative selection.  相似文献   

15.
This study has investigated the cross-reactivity upon thymic selection of thymocytes expressing transgenic TCR derived from a murine CD8+ CTL clone. The Idhigh+ cells in this transgenic mouse had been previously shown to mature through positive selection by class I MHC, Dq or Lq molecule. By investigating on various strains, we found that the transgenic TCR cross-reacts with three different MHCs, resulting in positive or negative selection. Interestingly, in the TCR-transgenic mice of H-2q background, mature Idhigh+ T cells appeared among both CD4+ and CD8+ subsets in periphery, even in the absence of RAG-2 gene. When examined on beta2-microglobulin-/- background, CD4+, but not CD8+, Idhigh+ T cells developed, suggesting that maturation of CD8+ and CD4+ Idhigh+ cells was MHC class I (Dq/Lq) and class II (I-Aq) dependent, respectively. These results indicated that this TCR-transgenic mouse of H-2q background contains both classes of selecting MHC ligands for the transgenic TCR simultaneously. Further genetic analyses altering the gene dosage and combinations of selecting MHCs suggested novel asymmetric effects of class I and class II MHC on the positive selection of thymocytes. Implications of these observations in CD4+/CD8+ lineage commitment are discussed.  相似文献   

16.
17.
The CD45 protein tyrosine phosphatase regulates Ag receptor signaling in T and B cells. In the absence of CD45, TCR coupling to downstream signaling cascades is profoundly reduced. Moreover, in CD45-null mice, the maturation of CD4+CD8+ thymocytes into CD4+CD8- or CD4-CD8+ thymocytes is severely impaired. These findings suggest that thymic selection may not proceed normally in CD45-null mice, and may be biased in favor of thymocytes expressing TCRs with strong reactivity toward self-MHC-peptide ligands to compensate for debilitated TCR signaling. To test this possibility, we purified peripheral T cells from CD45-null mice and fused them with the BWalpha-beta- thymoma to generate hybridomas expressing normal levels of TCR and CD45. The reactivity of these hybridomas to self or foreign MHC-peptide complexes was assessed by measuring the amount of IL-2 secreted upon stimulation with syngeneic or allogeneic splenocytes. A very high proportion (55%) of the hybridomas tested reacted against syngeneic APCs, indicating that the majority of T cells in CD45-null mice express TCRs with high avidity for self-MHC-peptide ligands, and are thus potentially autoreactive. Furthermore, a large proportion of TCRs selected in CD45-null mice (H-2b) were also shown to display reactivity toward closely related MHC-peptide complexes, such as H-2bm12. These results support the notion that modulating the strength of TCR-mediated signals can alter the outcome of thymic selection, and demonstrate that CD45, by molding the window of affinity/avidity for positive and negative selection, directly participates in the shaping of the T cell repertoire.  相似文献   

18.
Exclusion and inclusion of alpha and beta T cell receptor alleles.   总被引:20,自引:0,他引:20  
P Borgulya  H Kishi  Y Uematsu  H von Boehmer 《Cell》1992,69(3):529-537
Exclusion and inclusion of T cell receptor (TCR) genes were analyzed in alpha beta TCR transgenic mice. Both transgenes are expressed unusually early on the surface of CD4-8-, HSA+, IL-2R- thymocytes. These progenitor cells give rise to progeny, which at the single-cell level contains endogenous alpha but not beta TCR-RNA as well as protein, in addition to products encoded by the transgenes. Thus, the surface expression of an alpha beta TCR does not prevent further alpha TCR rearrangement in immature thymocytes that still transcribe RAG-1 and RAG-2 genes. Reduced levels of RAG-1 and RAG-2 RNA are detectable only in CD4+8+ TCR high cells, which result from positive selection in the thymus. The results suggest that a developing T cell may try different alpha beta TCRs for binding to thymic MHC ligands, and that recombination at the alpha locus ceases only after positive selection.  相似文献   

19.
During thymic development, T cell progenitors undergo positive selection based on the ability of their T cell Ag receptors (TCR) to bind MHC ligands on thymic epithelial cells. Positive selection determines T cell fate, in that thymocytes whose TCR bind MHC class I (MHC-I) develop as CD8-lineage T cells, whereas those that bind MHC class II (MHC-II) develop as CD4 T cells. Positive selection also induces migration from the cortex to the medulla driven by the chemokine receptor CCR7. In this study, we show that CCR7 is up-regulated in a larger proportion of CD4(+)CD8(+) thymocytes undergoing positive selection on MHC-I compared with MHC-II. Mice bearing a mutation of Th-POK, a key CD4/CD8-lineage regulator, display increased expression of CCR7 among MHC-II-specific CD4(+)CD8(+) thymocytes. In addition, overexpression of CCR7 results in increased development of CD8 T cells bearing MHC-II-specific TCR. These findings suggest that the timing of CCR7 expression relative to coreceptor down-regulation is regulated by lineage commitment signals.  相似文献   

20.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号