首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylamide gel electrophoretic analysis and immunoprecipitation were used to study glycoproteins from purified Rauscher murine leukemia virus (R-MuLV) and from AKR thymic lymphoblastoid cell membranes. In addition to gp70, a minor glycoprotein of approximately 52,000 daltons (gp52) was demonstrated in purified R-MuLV preparations, which was antigenically related to gp70. Analysis of R-MuLV glycopeptides obtained after exhaustive Pronase digestion showed that gp70 has at least two different glycopeptide size classes with molecular weights of 5,100 and 2,900, respectively. gp52, however, contained only a single glycopeptide size class of approximately 5,100 daltons, indicating that the two glycoproteins contain distinct carbohydrate components. Trypsin treatment of R-MuLV converted gp70 into a product with a molecular mass of approximately 52,000 daltons as well as a 45,000-dalton minor product, with little effect on virus infectivity. Similarly, trypsin treatment of 125I-labeled glycoproteins derived from AKR mouse lymphoblastoid cell membranes generated fragments antigenically related to gp70 and similar in size to those obtained by trypsin treatment of R-MuLV. In both cases, the appearance of cleavage products was accompanied by a decrease in gp70 during trypsin treatment. The occurrence of glycosylated components antigenically related to gp70 in AKR membrane glycoprotein preparations and in purified R-MuLV preparations which were similar to those generated by trypsin treatment supports the concept that these minor components arise from proteolytic cleavage of gp70.  相似文献   

2.
A beta-N-acetylgalactosaminyltransferase that preferentially transferred N-acetylgalactosamine to Sd(a-) Tamm-Horsfall glycoprotein was found in guinea-pig kidney microsomal preparations. This enzyme was kidney-specific and was able to transfer the sugar to other glycoproteins, such as fetuin and alpha 1-acidic glycoprotein. The presence of sialic acid in the acceptors was essential for the transferase activity when either glycoproteins or their Pronase glycopeptides were used as acceptors. Two glycopeptides (Tamm-Horsfall glycopeptides I and II) with a different carbohydrate composition were separated by DEAE-Sephacel chromatography from Pronase-digested Tamm-Horsfall glycoprotein. The amount of N-acetylgalactosamine transferred to glycopeptides by the enzyme correlated with their degree of sialylation. Enzymic digestion of N-[14C]acetylgalactosamine-labelled Tamm-Horsfall glycopeptide II showed that the transferred sugar was susceptible to beta-N-hexosaminidase. The amount of sugar cleaved by beta-hexosaminidase was strongly increased when the labelled Tamm-Horsfall glycopeptide II was pretreated with mild acid hydrolysis, a procedure that removed the sialic acid residues. Alkaline borohydride treatment of the labelled Tamm-Horsfall glycopeptide II did not release radioactivity, thus indicating that enzymic glycosylation took place at the N-asparagine-linked oligosaccharide units of Tamm-Horsfall glycoprotein.  相似文献   

3.
Monoclonal antibodies produced against the prototype cell-adapted Wyoming strain of equine infectious anemia virus (EIAV), a lentivirus, were studied for reactivity with the homologous prototype and 16 heterologous isolates. Eighteen hybridomas producing monoclonal antibodies (MAbs) were isolated. Western blot (immunoblot) analyses indicated that 10 were specific for the major envelope glycoprotein (gp90) and 8 for the transmembrane glycoprotein (gp45). Four MAbs specific to epitopes of gp90 neutralized prototype EIAV infectivity. These neutralizing MAbs apparently reacted with variable regions of the envelope gp90, as evidenced by their unique reactivity with the panel of isolates, suggesting recognition of at least three different neutralization epitopes. The conformation of these epitopes appears to be continuous, as they resisted treatment with sodium dodecyl sulfate and reducing reagents. Monoclonal antibodies that reacted with conserved epitopes on gp90 or gp45 failed to neutralize EIAV. Our data also demonstrated that there was a large spectrum of possible EIAV serotypes and confirmed that antigenic variation occurs with high frequency in EIAV. Moreover, the data showed that variation is a rapid and random process, as no pattern of variant evolution was evident by comparison of 13 isolates from parallel infections. These results represent the first production of neutralizing MAbs specific for a lentivirus glycoprotein and document alterations in one or more neutralization epitopes of the major surface glycoprotein among sequential isolates of EIAV recovered during persistent infection.  相似文献   

4.
We describe here a detailed analysis of the antigenic determinants of the surface unit glycoprotein (gp90) of equine infectious anemia virus (EIAV), using a comprehensive panel of synthetic peptides in enzyme-linked immunosorbent assays with immune serum from naturally and experimentally infected horses and with a panel of gp90-specific neutralizing and nonneutralizing monoclonal antibodies. The results of these studies identify immunoreactive segments throughout the conserved and variable domains of gp90 but localize immunodominant (100% reactivity) determinants to the amino and carboxyl termini of the glycoprotein molecule. Analysis of peptide reactivities with longitudinal serum samples taken from experimentally infected ponies revealed that antibody responses to conserved B-cell determinants appeared earlier and at higher titers than do antibodies specific for determinants contained in the variable domain of gp90. These observations suggest an evolution of antibody responses in EIAV-infected ponies that may correspond to the establishment of immunological control of virus replication and disease routinely observed in EIAV infections. In addition, the mapping of monoclonal antibody epitopes to peptides of 9 to 12 amino acids demonstrated that all of the neutralizing epitopes are located in the variable domain of gp90. The arrangement of neutralizing epitopes and critical structural considerations suggest that EIAV gp90 contains a principal neutralizing domain similar to the V3 loop of human immunodeficiency virus type 1. These antigenic analyses provide an important foundation for further analyzing the protective immune response generated during persistent EIAV infections and also provide potential peptide substrates for diagnostic assays and for vaccine strategies.  相似文献   

5.
Previous results from our laboratory have demonstrated that equine infectious anemia virus displays structural variations in its surface glycoproteins and RNA genome during passage and chronic infections in experimentally infected Shetland ponies (Montelaro et al., J. Biol. Chem. 259:10539-10544, 1984; Payne et al., J. Gen. Virol. 65:1395-1399, 1984). The present study was undertaken to obtain an antigenic and biochemical characterization of equine infectious anemia virus isolates recovered from an experimentally infected pony during sequential disease episodes, each separated by intervals of only 4 to 8 weeks. The virus isolates could be distinguished antigenically by neutralization assays with serum from the infected pony and by Western blot analysis with a monoclonal antibody against the major surface glycoprotein gp90, thus demonstrating that novel antigenic variants of equine infectious anemia virus predominate during each clinical episode. The respective virion glycoproteins displayed different electrophoretic mobilities on sodium dodecyl sulfate-polyacrylamide gels, indicating structural variation. Tryptic peptide and glycopeptide maps of the viral proteins of each virus isolate revealed biochemical alterations involving amino acid sequence and glycosylation patterns in the virion surface glycoproteins gp90 and gp45. In contrast, no structural variation was observed in the internal viral proteins pp15, p26, and p9 from any of the four virus isolates. Oligonucleotide mapping experiments revealed similar but unique RNase T1-resistant oligonucleotide fingerprints of the RNA genomes of each of the virus isolates. Localization of altered oligonucleotides for one virus isolate placed two of three unique oligonucleotides within the predicted env gene region of the genome, perhaps correlating with the structural variation observed in the envelope glycoproteins. Thus these results support the concept that equine infectious anemia virus is indeed capable of relatively rapid genomic variations during replication, some of which result in altered glycoprotein structures and antigenic variants which are responsible for the unique periodic disease nature observed in persistently infected animals. The findings of envelope specific differences in isolates of visna virus and of human T-cell lymphotropic virus III (acquired immune deficiency syndrome-related virus) suggest that this variation may be a common characteristic of the subfamily Lentivirinae.  相似文献   

6.
Suzuki T  Lennarz WJ 《Glycobiology》2002,12(12):803-811
When glycoproteins formed in the endoplasmic reticulum (ER) are misfolded, they are generally translocated into the cytosol for ubiquitination and are subsequently degraded by the proteasome. This system, the so-called ER-associated glycoprotein degradation, is important for eukaryotes to maintain the quality of glycoproteins generated in the ER. It has been established in yeast that several distinct proteins are involved in this translocation and degradation processes. Small glycopeptides formed in the ER are exported to the cytosol in a similar manner. This glycopeptide export system is conserved from yeast to mammalian cells, suggesting its basic biological significance for eukaryotic cells. These two export systems (for misfolded glycoproteins and glycopeptides) share some properties, such as a requirement for ATP and involvement of Sec61p, a central membrane protein presumably forming a dislocon channel for export of proteins. However, the machinery of glycopeptide export is poorly understood. In this study, various mutants known to have an effect on export/degradation of misfolded glycoproteins were examined for glycopeptide export activity with a newly established assay method. Surprisingly, most of the mutants were found not to exhibit a defect in glycopeptide export. The only gene that was found to be required on efficient export of both types of substrates was PMR1, the gene encoding the medial-Golgi Ca(2+)/Mn(2+)-ion pump. These results provide evidence that although the systems involved in export of misfolded glycoproteins and glycopeptides share some properties, they have exhibited distinct differences.  相似文献   

7.
The time course for the partial deglycosylation of blood-group-specific glycoproteins from human ovarian-cyst fluids with 0.25 M-H2SO4/acetic acid and 6 M-HCl in methanol was studied. Either reagent readily removed about 80% of the carbohydrate from the glycoproteins to leave non-diffusible glycopeptides that contain N-acetylgalactosamine as the predominant sugar. Some changes in amino acid distribution were observed during the deglycosylation, which were attributed to an accelerated break-up of the nonglycosylated regions of the parent glycoprotein. The N-acetylgalactosaminyl-peptides isolated were judged to be polydisperse by gel filtration, and ion-exchange chromatography divided the glycopeptide population into several fractions with differing amino acid compositions. A Lumbricus terrestris hexosaminidase preparation was successful in removing almost all the remaining sugar from the glycopeptides, but caused further rupture of the peptide. When a per O-acetylated glycoprotein was treated with the H2SO4/acetic acid reagent the glycopeptide contained, in addition to N-acetylgalactosamine, about 50% of the sialic acid present in the parent glycoprotein, indicating that most of this sugar is located near the peptide end of the carbohydrate chains.  相似文献   

8.
Joshi S  Katiyar S  Lennarz WJ 《FEBS letters》2005,579(3):823-826
Peptide:N-glycanase (PNGase) is a deglycosylating enzyme that catalyzes the hydrolysis of the beta-aspartylglycosylamine bond of aspargine-linked glycopeptides and glycoproteins. Earlier studies from our laboratory indicated that PNGase catalyzed de-N-glycosylation was limited to glycopeptide substrates, but recent reports have demonstrated that it also acts upon full-length misfolded glycoproteins. In this study, we utilized two glycoprotein substrates, yeast carboxypeptidase and chicken egg albumin (ovalbumin), to study the deglycosylation activity of yeast PNGase and its mutants. Our results provide further evidence that PNGase acts upon full-length glycoprotein substrates and clearly establish that PNGase acts only on misfolded or denatured glycoproteins.  相似文献   

9.
We previously reported on glycopeptide mapping of erythropoietin (EPO) by liquid chromatography/mass spectrometry (LC/MS). Using this method, glycopeptides in proteolytic digestion can be eluted before peptides, and are further separated on the basis of the carbohydrate structure. The detailed glycosylation at each glycosylation site can be elucidated based on mass chromatography and mass spectroscopy. In this study, we evaluated glycopeptide mapping with regard to its use in comparability assessment of glycoprotein products possessing multiple glycosylation sites. Models of closely related glycoprotein products used in this study are EPOs produced from three different sources. We previously reported that there are differences in the carbohydrate heterogeneity of these EPOs with regard to sialylation, acetylation, and sulphation patterns, using sugar mapping by LC/MS. In this paper, we demonstrated that glycopeptide mapping can distinguish site-specific glycosylation among these three EPOs and reveal the differences in acetylation, sialylation, and sulphation at each glycosylation site in one analysis. Our method can thus be useful in comparability assessment of therapeutic glycoproteins in terms of glycosylation.  相似文献   

10.
Sindbis virus was used as a probe to examine glycosylation processes in two different species of cultured cells. Parallel studies were carried out analyzing the carbohydrate added to Sindbis glycoprotein E2 when the virus was grown in chicken embryo cells and BHK cells. The Pronase glycopeptides of Sindbis glycoprotein E2 were purified by a combination of ion-exchange and gel filtration chromatography. Four glycopeptides were resolved, ranging in molecular weight from 1,800 to 2,700. Structures are proposed for each of the four glycopeptides, based on data obtained by quantitative composition analyses, methylation analyses, and degradation of the glycopeptides using purified exo- and endoglycosidases. The largest three glycopeptides (S1, S2, and S3) have similar structures but differ in the extent of sialylation. All three contain N-acetylglucosamine, mannose, galactose, and fucose, in a structure similar to oligosaccharides found on other glycoproteins. Glycopeptide S1 has two residues of sialic acid, whereas glycopeptides S2 and S3 contain 1 and 0 residues of sialic acid, respectively. The smallest glycopeptide, S4, contains only N-acetyglucosamine and mannose, and is also similar to mannose-rich oligosaccharides found on other glycoproteins. Each of the complex glycopeptides (S1, S2, or S3) from virus grown in BHK cells is indistinguishable from the corresponding glycopeptides derived from virus grown in chicken cells. Glycopeptide S4 is also very similar in size, composition, and sugar linkages from virus derived from the two hosts. These results suggest that chicken cells and BHK cells have similar glycosylation mechanisms and glycosylate Sindbis glycoprotein E2 in nearly identical ways.  相似文献   

11.
Proteomic techniques, such as HPLC coupled to tandem mass spectrometry (LC-MS/MS), have proved useful for the identification of specific glycosylation sites on glycoproteins (glycoproteomics). Glycosylation sites on glycopeptides produced by trypsinization of complex glycoprotein mixtures, however, are particularly difficult to identify both because a repertoire of glycans may be expressed at a particular glycosylation site, and because glycopeptides are usually present in relatively low abundance (2% to 5%) in peptide mixtures compared to nonglycosylated peptides. Previously reported methods to facilitate glycopeptide identification require either several pre-enrichment steps, involve complex derivatization procedures, or are restricted to a subset of all the glycan structures that are present in a glycoprotein mixture. Because the N-linked glycans expressed on tryptic glycopeptides contribute substantially to their mass, we demonstrate that size exclusion chromatography (SEC) provided a significant enrichment of N-linked glycopeptides relative to nonglycosylated peptides. The glycosylated peptides were then identified by LC-MS/MS after treatment with PNGase-F by the monoisotopic mass increase of 0.984 Da caused by the deglycosylation of the peptide. Analyses performed on human serum showed that this SEC glycopeptide isolation procedure results in at least a 3-fold increase in the total number of glycopeptides identified by LC-MS/MS, demonstrating that this simple, nonselective, rapid method is an effective tool to facilitate the identification of peptides with N-linked glycosylation sites.  相似文献   

12.
Protein glycosylation was explored by direct nanoESI MS and MS/MS analysis of ZIC-HILIC-enriched proteolytic glycopeptides without further separation or purification. In a previous publication, we demonstrated that a direct MS-based analysis of proteolytic glycopeptides is feasible for a number of proteins (Henning , S. J. Mass Spectrom. 2007 , 42 , 1415 - 21). This method has now been refined for two aspects: (1) separation of glycopeptides by use of ZIC-HILIC SPE and (2) the use of unspecific proteases like thermolysin, elastase, or a trypsin/chymotrypsin mixture leading per se to a mass-based separation, that is, small nonglycosylated peptides and almost exclusively glycopeptides at higher m/z values. Furthermore, the glycopeptides produced by the above proteases in general contain short peptide backbones thus improving-probably due to their higher hydrophilicity--the ZIC-HILIC-based separation. The combination of unspecific proteolysis, glycopeptide separation, and their direct MS analysis was successfully accomplished for probing glycoproteins carrying high-mannose type (ribonuclease B), neutral (asialofetuin), and acidic (haptoglobin and α1-acid glycoprotein) complex type glycans as well as for glycopeptides derived from glycoprotein mixtures and, finally, for exploring the glycosylation of a human IgG preparation. Our results show that the presented method is a fast, facile, and inexpensive procedure for the elucidation of protein N-glycosylation.  相似文献   

13.
Procedures are described for the purification of the Sindbis virus structural proteins. The amino acid and carbohydrate compositions of the purified proteins are presented for virus grown in BHK-21/13 and chicken embryo cells. Glycoprotein E1 from virus grown in BHK cells is deficient in a mannose-rich glycopeptide found on that glycoprotein when virus is grown in chicken embryo cells. The complex glactose-containing glycopeptides appear similar for virus grown in both hosts. However, when virus is grown in BHK cells, both glycoproteins are enriched in those glycopeptides containing more sialic acid. Since the two viral glycoproteins are difficult to separate cleanly during purification, it is suggested that there may be strong, but noncovalent, interactions between glycoproteins E1 and E2. It is also suggested that there may be an interaction between glycoprotein E2 and a component of the nucleocapsid.  相似文献   

14.
Protein glycosylation is a common post-translational modification that is involved in many biological processes, including cell adhesion, protein-protein and receptor-ligand interactions. The glycoproteome constitutes a source for identification of disease biomarkers since altered protein glycosylation profiles are associated with certain human ailments. Glycoprotein analysis by mass spectrometry of biological samples, such as blood serum, is hampered by sample complexity and the low concentration of the potentially informative glycopeptides and -proteins. We assessed the utility of lectin-based and HILIC-based affinity enrichment techniques, alone or in combination, for preparation of glycoproteins and glycopeptides for subsequent analysis by MALDI and ESI mass spectrometry. The methods were successfully applied to human serum samples and a total of 86 N-glycosylation sites in 45 proteins were identified using a mixture of three immobilized lectins for consecutive glycoprotein enrichment and glycopeptide enrichment. The combination of lectin affinity enrichment of glycoproteins and subsequent HILIC enrichment of tryptic glycopeptides identified 81 N-glycosylation sites in 44 proteins. A total of 63 glycosylation sites in 38 proteins were identified by both methods, demonstrating distinct differences and complementarity. Serial application of custom-made microcolumns of mixed, immobilized lectins proved efficient for recovery and analysis of glycopeptides from serum samples of breast cancer patients and healthy individuals to assess glycosylation site frequencies.  相似文献   

15.
High molecular weight glycoproteins were isolated and purified from canine antral and fundic mucosal tissue by means of non-degrading techniques. The results disclosed the advantage of urea extraction technique over the culture method in isolating the native glycoproteins. The glycoproteins were susceptible to degradation by protease, thus yielding low molecular weight glycopeptides. Chemical analysis of these glycopeptides and their parent macromolecules revealed that the oligosaccharide residues are attached to threonine, serine and proline residues of the protein chains. Similarly, high molecular weight glycoproteins isolated from human gastric gel mucin showed the same characteristics of canine gastric glycoproteins. Canine fundic glycoprotein or glycopeptide released their prosthetic carbohydrate groups under the lytic effect of fundic acid hydrolases.  相似文献   

16.
The envelope glycoprotein of HIV-I in infected, cultured human T cells is synthesized as a precursor of apparent Mr 160 kDa (gp160) and is cleaved to two glycoproteins, gp120 and gp41, which are the mature envelope glycoproteins in the virus. Neither the temporal and spatial features of glycosylation nor the oligosaccharide processing and proteolytic cleavage of the envelope glycoprotein are well understood. To understand more about these events, we investigated the glycosylation and cleavage of the envelope glycoproteins in the CD4+ human cell line, Molt-3, persistently infected with HIV-I (HTLV IIIB). The carbohydrate analysis of gp160 and gp120 and the behavior of the glycoproteins and glycopeptides derived from them on immobilized lectins demonstrate that both of these glycoproteins contain complex- and high-mannose-type Asn-linked oligosaccharides. In addition, the N-glycanase-resistant oligosaccharides of gp120 were found to contain N-acetyl-galactosamine, a common constituent of Ser/Thr-linked oligosaccharides. Pulse-chase analysis of the conversion of [35S]cysteine-labeled gp160 showed that in Molt-3 cells it takes about 2 h for gp120 to arise with a half-time of conversion of about 5 h. At its earliest detectable occurrence, gp120 was found to contain complex-type Asn-linked oligosaccharides. Taken together, these results indicate that proteolytic cleavage of gp160 to gp120 and gp41 occurs either within the trans-Golgi or in a distal compartment.  相似文献   

17.
The lipid-free protein residue of rat brain tissue was treated with papain to solubilize the heteropolysaccharide chains of the tissue glycoproteins. The glycopeptides were separated into non-dialyzable and dialyzable glycopeptide preparations. Each preparation was then sorted out into groups of glycopeptides by means of electrophoresis and gel filtration. The quantitatively predominant glycopeptides were the alkali-stable glycopeptides (Group A) which accounted for 64% of the glycopeptide carbohydrate recovered from rat brain. Most of the group A glycopeptides appeared in the non-dialyzable preparation. The molecular weight of the glycopeptides of Group A ranged from approximately 5200–3700. The largest glycopeptide molecule in this mixture possessed the highest electrophoretic mobility and contained one fucose, four N-acetylneuraminic acid (NANA), six N-acetylglucosamine, four galactose, and three mannose residues per molecule. The spectrum of glycopeptides isolated in this group showed a progressive decrease in NANA rsidues, NANA and galactose residues, and NANA, galactose, and N-acetylglucosamine residues which could be correlated with a progressive decline in molecular weight and electrophoretic mobility. Some of the glycopeptides in each fraction recovered from this group of glycopeptides contained sulfate ester groups.A second group of glycopeptides (Group C glycopeptides) accounted for 25% of the total glycoprotein carbohydrate recovered from rat brain. These were recoverd from the dialyzable glycopeptide preparation, and resolved into three fractions by column electrophoresis. These glycopeptides do not contain sulfate, are composed predominately of mannose and N-acetylglucosamine, and possess a molecular weight of approximately 3000.Several minor groups of glycopeptides were detected. Alkali-labile glycopeptides (Group B) appeared in the non-dialyzable glycopeptide preparation. The dialyzable glycopeptide preparation contained glycopeptides (Group E) which contained N-acetylgalactosamine and glucose. These had a molecular weight of approximately 2000. Group D glycopeptides recovered from the dialyzable glycopeptide preparation contained variable amounts of NANA, mannose, galactose, N-acetylglucosamine, and sulfate. These possessed a molecular weight of approximately 2900.  相似文献   

18.
Retinyl acetate alters glycoprotein synthesis in mouse epidermal cells in culture. Epidermal glycoproteins were enzymatically digested to glycopeptides and separated on DEAE Sephadex A50 columns using different concentrations of LiCl. There was a two-fold increase in incorporation of fucose and glucosamine in the 0.2 M LiCl fraction from cells treated for 3 weeks with 12.5 μg/ml retinyl acetate and 1.25% DMSO as compared with DMSO controls. No changes were noted in other fractions. The glycopeptide from A treated cells isolated on 0.2 M LiCl had a higher molecular weight than glycopeptides from that same fraction eluted by control cells. This isolated newly synthesized glycopeptide from vitamin A treated cells appears to be a single product by rechromatography on DEAE Sephadex A50 and Sephadex G100 columns.  相似文献   

19.
Glycoprotein is one of the important biopolymer in a biological system. In order to understand the complex correlation between the exact oligosaccharide structure of the glycoprotein and its function, preparation of homogeneous glycoprotein is to be essential. For such a purpose, chemical synthesis is one of the most promising methods to obtain homogeneous glycoproteins. Glycopolypeptide, which is a backbone of glycoprotein and an essential intermediate for glycoprotein synthesis, can be obtained through coupling of peptide and glycopeptide segments because straightforward synthesis of such a long glycopolypeptide is still a challenging task. Native chemical ligation (NCL) is one of the powerful methods for the coupling reaction of peptides, however, despite extensive investigation, NCL has site limitation for the coupling. In this context, we discovered NCL at serine site, where is a highly conserved amino acid residue in glycoproteins. This reaction strategy is owed to conversion reaction of cysteine residue to serine residue after conventional NCL. This conversion reaction is consisted of three steps; S-methylation of cysteine, CNBr reaction to afford O-ester linked peptide, and O to N acyl shift to get native peptide linkage with serine residue. During extensive investigation of the strategy, we found new reaction media for CNBr reaction, which is the key reaction in the strategy. This enabled us to synthesize not only N-linked glycopeptides but also O-linked sialyl glycopeptides. Thus we could demonstrate the usefulness of this new glycopeptide ligation strategy. In this short review, we will introduce our newly developed cysteine to serine conversion reaction which will expand the application of NCL in peptide as well as glycopeptide synthesis.  相似文献   

20.
An effective vaccine against acquired immune deficiency syndrome is still unavailable after dozens of years of striving. The glycoprotein gp41 of human immunodeficiency virus is a good candidate as potential immunogen because of its conservation and relatively low glycosylation. As a reference of human immunodeficiency virus gp41, gp45 from equine infectious anemia virus (EIAV) could be used for comparison because both wild‐type and vaccine strain of EIAV have been extensively studied. From structural studies of these proteins, the conformational changes during viral invasion could be unveiled, and a more effective acquired immune deficiency syndrome vaccine immunogen might be designed based on this information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号