首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scale of production-destruction biotic balance in the Black Sea ecosystem, flows of organic carbon, carbon dioxide, and oxygen, and rate and volume of organic matter input in the Black Sea sediment as a source of formation and accumulation of fossilized hydrocarbon fuel minerals are estimated on the basis of the current concept of efficiency of solar radiation utilization by photosynthesis. The volume of excessive oxygen formed in the ecosystem and its contribution to global oxygenation of the atmosphere are shown.  相似文献   

2.
Summary 14C-Formic acid and other14C-organic compounds are formed on surface materials when mixtures of14CO,12CO2 or N2 and water vapor are irradiated with ultraviolet light (UV) of > 250 nm. The rate of organic formation is roughly proportional to the quantity of substratum irradiated. The available evidence suggests that14CO adsorbed to or in contact with the substratum is excited by the long wavelength UV and reacts with adsorbed H2O or surface hydroxyl groups yielding the organic products. Photodestruction of the14C-organics yields14CO2 and14CO. A steady state is attained when organic products reach a concentration such that the rate of photodestruction is equal to the rate of synthesis. The product accumulation is greater and the photodestruction is slower when N2 is used as diluent gas.Differences in the rates of synthesis, rates of photodestruction and amounts of product accumulation are observed with different silica and alumina substrata. The substrata with large surface areas are most effective for synthesis while maximum photoprotection of organics is afforded by substrata containing high concentrations of surface hydroxyl groups.The observation of the synthesis on a variety of substrata using realistic simulations of atmospheres and solar energies strengthens previous proposals that this process may occur on Mars and may have been important on the primitive Earth.  相似文献   

3.
The circadian rhythm of CO2 output in darkened leaves of Bryophyllum fedtschenkoi R. Hamet and Perrier can be inhibited by cycloheximide (10-6 mol) and 2,4-dinitrophenol (10-5 mol) applied via the transpiration stream. After having been suppressed by 10-6 M cycloheximide, the rhythm can be reinitiated with a 12-h exposure to light. Experiments using 14CO2 show that cycloheximide abolishes the rhythm by inhibiting the dark fixation of CO2. Cycloheximide inhibits malate accumulation and acidification of the leaves, but does not affect the amount of the CO2-fixing enzyme phosphoenol-pyruvate carboxylase (PEP-C, EC 4.1.1.31) which can be extracted from the leaves during the 45 h of the experiment. Cycloheximide has no direct effect on the activity of the enzyme as measured in the assay. PEP-C from desalted leaf extracts was inhibited by L-malate (Ki=0.4 mmol). The most likely explanation for the inhibitory effect of cycloheximide and dinitrophenol is that they cause changes in tonoplast properties which result in a redistribution of malate from the vacuole to the cytoplasm. An increase in malate concentration in the cytoplasm will lead to inhibition of PEP-carboxylase, and hence the suppression of the rhythm of CO2 output.Abbreviations CAM crassulacean acid metabolism - PEP-C phosphoenol-pyruvate carboxylase - MDH malate dehydrogenase - CHM cycloheximide - DNP 2,4-dinitrophenol - LD light-dark-cycle - DD continuous darkness  相似文献   

4.
An experimental approach of the phosphate exchange across the water–sediment interface in fish ponds of the Deroua farm (Béni-Mellal, Morocco) is needed to understand the phosphate dynamics in these ponds in relation to their water quality. During this study, we conducted experiments to determine the P-fractions of the different pond sediments and to estimate the release from these sediments of phosphate available for algal uptake. We also determined the amount of phosphate needed to saturate the sediments of two different fish ponds under anoxic and oxic conditions. Phosphate release from sediments comes mainly from Fe(OOH)P and is more important in ponds lined with sheets. The accumulation of organic matter in sediments favours the installation of anoxic conditions and enhances the phosphate release from CaCO3P, labile in these pond sediments. Under experimental conditions, org-P plays a minor role in the P-release. Oxic conditions, to the contrary, have an inhibitory effect on the P-release from sediments. About 80–98% of the P-adsorbed onto different pond sediments was recovered in the inorg-P-fractions. Aeration induces the oxidation of FeS to Fe(OOH) which can adsorb phosphate from solution. Besides, the presence of bacteria in pond sediments was essential to promote phosphate release under anoxic conditions by controlling the oxidation state of iron and the mineralization of the organic matter. Sheet-lined ponds, when insufficiently dried, accumulate a large quantity of organic matter in their sediments. After a decrease in pH, P is released from CaCO3P and enhances the phytoplankton productivity responsible for renewed accumulation of organic matter. Org-C concentrations in sediments over 20 mg g–1 d.w. favour the formation of toxic factors (Fe2+, Mn2+, NO2 and H2S) harmful for carp growth. An extended period of drying efficiently enhances the mineralization of organic matter.  相似文献   

5.
We quantified metabolic power consumption as a function of wind speed in the presence and absence of simulated solar radiation in rock squirrels, Spermophilus variegatus, a diurnal rodent inhabiting arid regions of Mexico and the western United States. In the absence of solar radiation, metabolic rate increased 2.2-fold as wind speed increased from 0.25 to 4.0 m·s-1. Whole-body thermal resistance declined 56% as wind speed increased over this range, indicating that body insulation in this species is much more sensitive to wind disruption than in other mammals. In the presence of 950 W·m-2 simulated solar radiation, metabolic rate increased 2.3-fold as wind speed was elevated from 0.25 to 4.0 m·s-1. Solar heat gain, calculated as the reduction in metabolic heat production associated with the addition of solar radiation, increased with wind speed from 1.26 mW·g-1 at 0.25 m·s-1 to 2.92 mW·g-1 at 4.0 m·s-1. This increase is opposite to theoretical expectations. Both the unexpected increase in solar heat gain at elevated wind speeds and the large-scale reduction of coat insulation suggests that assumptions often used in heat-transfer analyses of animals can produce important errors.Abbreviations absorptivity of coat to solar radiation - kinematic viscosity of air (mm2·s-1) - reflectivity of coat to solar radiation - a r B expected at zero wind speed (s·m-1) - A P projected surface area of animal on plane perpendicular to solar beam (cm2) - A SKIN skin surface area (cm2) - b Coefficient describing change in r B with change in square-root of wind speed (s1.5·m1.5) - d hair diameter (m) - d characteristic dimension of animal (m) - D H thermal diffusivity of air (m2·s-1) - E evaporative heat loss (W·m-2) - I probability per unit coat depth that photon will strike hair - k constant equalling 1200 J·m-3·°C-1 - l C coat depth m) - l H hair length (m) - M metabolic rate (W·m-2) - n density of hairs of skin (m-2) - Q A solar heat gain to animal (W·m-2) - Q I solar irradiance intercepted by animal (W·m-2) - RQ respiratory quotient - r A thermal resistance of boundary layer (s·m-1) - r B whole-body thermal resistance (s·m-1) - r E thermal resistance between animal surface and environment s·m-1) - r R radiative resistance (s·m-1) - r S sum of r B and r E at 0.25 m·s-1 (s·m-1) - r T tissue thermal resistance s·m-1) - T AIR air temperature (°C) - T B body temperature (°C) - T E operative temperature of environment (°C) - T ES standard operative temperature of environment (°C) - u wind speed (m·s-1)  相似文献   

6.
Acidilobus saccharovorans is an anaerobic, organotrophic, thermoacidophilic crenarchaeon isolated from a terrestrial hot spring. We report the complete genome sequence of A. saccharovorans, which has permitted the prediction of genes for Embden-Meyerhof and Entner-Doudoroff pathways and genes associated with the oxidative tricarboxylic acid cycle. The electron transfer chain is branched with two sites of proton translocation and is linked to the reduction of elemental sulfur and thiosulfate. The genomic data suggest an important role of the order Acidilobales in thermoacidophilic ecosystems whereby its members can perform a complete oxidation of organic substrates, closing the anaerobic carbon cycle.Acidophilic microorganisms are widely dispersed in natural acidic environments, including volcanic hot springs, and are, in the majority, aerobes (14). However, such anoxic, high-temperature, acidic environments are inhabited by metabolically versatile anaerobic thermoacidophiles of the archaeal phylum Crenarchaeota. Lithoautotrophic thermoacidophiles oxidize molecular hydrogen in the course of elemental sulfur (S0) respiration. Organotrophs couple the oxidation of organic substrates to the reduction of S0 or thiosulfate. They all belong to the genus Acidilobus in the family Acidilobaceae and to the genus Caldisphaera in the family Caldisphaeraceae (4, 13, 22, 24). Acidilobaceae and Caldisphaeraceae form the crenarchaeal order Acidilobales (24). Acidilobus saccharovorans was isolated from an acidic hot spring of Uzon Caldera, Kamchatka, Russia (24). It is an obligately anaerobic acidophile with a range of growth from pH 2.5 to 5.8 (optimum at pH 3.5 to 4) and a temperature range from 60 to 90°C (optimum at 80 to 85°C). It utilizes a wide range of proteinaceous and carbohydrate substrates and cannot grow lithoautotrophically on H2 and CO2 (24). S0 and thiosulfate stimulate growth and are reduced to H2S. Protons cannot serve as electron acceptors, since no H2 is produced during growth in the absence of S0 (24). Genomic sequences of aerobic, thermoacidophilic euryarchaea Thermoplasma acidophilum (26) and Picrophilus torridus (8) give an insight into the thermoacidophilic survival strategy. However, no genomes of obligately anaerobic, thermoacidophilic archaea were available until now. Here we present the genome of A. saccharovorans and show that it encodes numerous hydrolytic enzymes and metabolic pathways necessary for the utilization and complete mineralization of organic substrates in its natural habitat, acidic hot springs.  相似文献   

7.
A total of 4589 leptocephali of the congrid eel, Ariosoma balearicum, were examined from 17 cruises in the western North Atlantic Ocean. Myomere counts made on 915 of these indicated there were two ranges of number of myomeres that appear to be associated with separate spawning populations. Those with the higher range (high count: 128–137) were consistently 70–100mm in length in the Sargasso Sea from February to April and 20–80mm in length in the northern Sargasso Sea and Gulf Stream from September to October. Those with the lower range (low count: 120–130) were rare in the northern and eastern Sargasso Sea where they had consistently greater lengths than high count leptocephali and were most abundant in the Florida Current and Providence Channel. The geographic distributions of size and myomere ranges in relation to hydrography provide strong support for the hypothesis that high count eels found along the South Atlantic Bight (SAB) migrate across the Florida Current to spawn in the northwest Sargasso Sea. This migratory pattern is similar to those of Anguilla rostrata and Conger oceanicus, which use the southern Sargasso Sea for development as larvae. However, the distribution of high count leptocephali suggests that they use the entire Sargasso Sea gyre as a development area as larvae before crossing the Florida Current and recruiting to the SAB. The low count eels inhabiting the Bahamas appear to spawn near the banks and their abundance in the Providence Channel and southwest Sargasso Sea suggests most are retained close to the Bahamas. These two distinct styles of spawning, distribution and recruitment of larvae are hypothesized to be related to the different hydrographic regimes of the two juvenile habitats and the resulting constraints on growth and recruitment of larvae. Vertebral and myomere counts reported from other areas suggest there are distinct populations in other regions of the North Atlantic Ocean.  相似文献   

8.
The potentials for sequential reduction of inorganic electron acceptors and production of methane have been examined in sixteen rice soils obtained from China, the Philippines, and Italy. Methane, CO2, Fe(II), NO 3 - , SO 4 2 , pH, Eh, H2 and acetate were monitored during anaerobic incubation at 30 °C for 120 days. Based on the accumulation patterns of CO2 and CH4, the reduction process was divided into three distinct phases: (1) an initial reduction phase during which most of the inorganic electron acceptors were depleted and CO2 production was at its maximum, (2) a methanogenic phase during which CH4 production was initiated and reached its highest rate, and (3) a steady state phase with constant production rates of CH4 and CO2. The reduction phases lasted for 19 to 75 days with maximum CO2 production of 2.3 to 10.9 mol d-1 g-1 dry soil. Methane production started after 2 to 87 days and became constant after about 38--68 days (one soil >120 days). The maximum CH4 production rates ranged between 0.01 and 3.08 mol d-1 g-1. During steady state the constant CH4 and CO2 production rates varied from 0.07 to 0.30 mol d-1 g-1 and 0.02 and 0.28 mol d-1 g-1, respectively. Within the 120 d of anaerobic incubation only 6--17% of the total soil organic carbon was released into the gas phase. The gaseous carbon released consisted of 61--100% CO2, <0.1--35% CH4, and <5% nonmethane hydrocarbons. Associated with the reduction of available Fe(III) most of the CO2 was produced during the reduction phase. The electron transfer was balanced between total CO2 produced and both CH4 formed and Fe(III), sulfate and nitrate reduced. Maximum CH4 production rate (r = 0.891) and total CH4 produced (r = 0.775) correlated best with the ratio of soil nitrogen to electron acceptors. Total nitrogen content was a better indicator for available organic substrates than the total organic carbon content. The redox potential was not a good predictor of potential CH4 production. These observations indicate that the availability of degradable organic substrates mainly controls the CH4 production in the absence of inorganic electron acceptors.  相似文献   

9.
Periphyton growth and diatom community structure in a cooling water pond   总被引:3,自引:3,他引:0  
Periphyton (Aufwuchs) accumulation was measured on artificial substrates in a pond in central Finland which receives warm cooling-water effluent from a power plant. The growth of periphyton was generally more rapid on the substrates during the first two weeks of colonization near the inflow of the warm water effluent than in the middle of the pond. The maximum accumulation of periphyton was in spring and autumn (dry weight maximum at warm effluent was in spring 3.5 mg DW cm−2,2.65 mg AFDW cm−2; chlorophyll a maximum 3.96 μg cm−2 was found in autumn at pond-middle station). During mid-winter months the growth was strongly limited by solar radiation, but the growth was also slow at both stations in the summer months, when the power plant was out of operation. The periphyton accumulation rate was fastest near the water surface and decreased rapidly with increasing depth. A total of 167 diatom species were found in periphyton samples. However, most species were rare; many of the dominants were common to both plankton and periphyton. Species similarity analyses (Jaccard's similarity) between 10 different diatom communities (including periphyton from 9 different types of substrates and phytoplankton) indicated low similarity index values although differences between communities were not significant.  相似文献   

10.
Mark  U.  Tevini  M. 《Plant Ecology》1997,128(1-2):225-234
The effects of solar UV-B radiation, in combination with elevated temperature (4 °C ) and CO2 (680 L L-1 concentration, on sunflower and maize seedlings were studied from May to August in 1991 at the research station Quinta de São Pedro in Portugal (38.7°N). The ambient solar radiation of Portugal was reduced to levels of Central European latitudes by using the ozone filter technique. This radiation served as control, while the ambient solar radiation of Portugal was to simulate intense UV-B treatment (+30%). All plants were grown up to 18 days in 4 climate controlled growth chambers simulating a daily course of temperature with Tmax=28 °C or 32 °C , resp., and ambient CO2 concentrations (340 L L-1); in one chamber the CO2 concentration was twice as high (680 L L-1). Under intense UV-B and at 28 °C (Tmax) all growth parameters (height, leaf area, fresh and dry weight, stem elongation rate, relative growth rate) of sunflower and maize seedlings were reduced down to 35% as compared to controls. An increase in growing temperature by 4 °C , alone or in combination with doubled CO2, compensated or even overcompensated the UV-B effect so that the treated plants were comparable to controls. Chlorophyll content, on a leaf area basis, increased under intense UV-B radiation. This increase was compensated by lower leaf areas, resulting in comparable chlorophyll contents. Similar to growth, also the net photosynthetic rates of sunflower and maize seedlings were reduced down to 29% by intense UV-B calculated on a chlorophyll basis. This reduction was compensated by an increased temperature. Doubling of CO2 concentration had effects only on sunflower seedlings in which the photosynthetic rates were higher than in the controls. Dark respiration rates of the seedlings were not influenced by any experimental condition. Transpiration and water use efficiency (wue) were not influenced by intense UV-B. Higher temperatures led to higher transpiration rates and lower water use efficiencies, resp.. Doubling of CO2 reduced the transpiration rate drastically while for wue maximum values were recorded.  相似文献   

11.
  • 1.1. Indian River male broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 18, 24 and 30% protein + 0 or 1 mg triiodothyronine (T3)/kg of diet to study energetic costs of lipogenesis and the use of various substrates for in vitro lipogenesis.
  • 2.2. De novo lipid and CO2 production were determined in the presence of [1-14C]pyruvate, [2-14q]pyruvate, [3-14C]pyruvate, [2-14C]acetate and [U-14C]alanine.
  • 3.3. Oxygen consumption was determined in mitochondrial preparations to estimate the energetic costs in expiants synthesizing lipid.
  • 4.4. Radiolabeled CO2 derived from [1-14C]pyruvate was used as an estimate of coenzyme A availability in liver expiants. Lipids derived from [2-14C]pyruvate, [2-14C]acetate and [U-14C]alanine estimate relative substrate efficiency.
  • 5.5. Labeled CO2 production from [1-14C]pyruvate was greatest in that group fed a 12% protein diet and least in the group fed a 30% protein diet.
  • 6.6. In addition, T3 increased CO2 production from [1-14C]pyruvate.
  • 7.7. The production of 14CO2 from the second carbon of pyruvate or acetate was increased by T3.
  • 8.8. The low-protein diet (12% protein) increased (P <0.05) lipogenesis.
  • 9.9. Adding T3 to the diets decreased carbon flux into lipid from all substrates, but increased CO2 production from all substrates without changing stage 3 and 4 respiration rates in mitochondrial preparations.
  • 10.10. These observations imply that coenzyme A availability may have regulated de novo lipogenesis in the present study.
  • 11.11. It was also concluded that previously noted effects of T3 on intermediary metabolism may involve metabolic pathways that do not involve changes in mitochondrial function.
  相似文献   

12.
The potential adverse phytotoxic effects of the herbicide safeners CGA-92194 {-[1,3-dioxolan-2-yl-methoxy)imino]benzeneacetonitrile}, cyometrinil [-(cyanomethoxy)imino-benzeneacetonitrile] and flurazole [phenylmethyl 2-chloro-4-(trifluoromethyl)-5-thiazole-carboxylate] on selected metabolic processes of enzymatically isolated leaf cells of soybean [Glycine max (L.) Merr.] were compared in time- and concentration-course studies. CO2 fixation, protein synthesis, RNA synthesis, DNA synthesis, and lipid synthesis were assayed by the incorporation of NaH14CO3, [14C]-leucine, [14C]-uracil, [3H]thymidine, and [14C]-acetate, respectively, into the isolated cells. CGA-92194 and cyometrinil behaved similarly, and at low concentrations (0.1, 1, and 10 M) they stimulated rather than inhibited the five metabolic processes assayed, following incubation periods of up to 2 h. At the highest concentration of 100 M, both safeners inhibited all metabolic processes of the soybean leaf cells but neither compound exhibited rapid and distinct inhibitions as might be expected in the case of inhibition of a primary target site by a potent inhibitor. At low concentrations and early incubation periods (30 and 60 min), flurazole effects on all metabolic processes were also stimulatory rather than inhibitory. However, the stimulation of CO2 fixation by 0.1 and 1.0 M was highly significant. At 100 M flurazole was extremely potent on all metabolic processes of soybean leaf cells examined. At the 2-h incubation period, flurazole also inhibited all metabolic processes at concentrations lower than 100 M. The sensitivity of the five metabolic processes to flurazole decreased in the following order: photosynthesis = lipid synthesis >DNA synthesis>protein synthesis>RNA synthesis.Contribution No. 534, Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg VA 24061 USA.  相似文献   

13.
Smart  J. B.  Dilworth  M. J.  Robson  A. D. 《Archives of microbiology》1984,140(2-3):281-286
The effect of P nutrition on phosphate uptake and alkaline phosphatase activity was studied in chemostat culture for four rhizobial and three bradyrhizobial species. Phosphate-limited cells took up phosphate 10- to 180-fold faster than phosphate-rich cells. The four fast-growing rhizobial strains contained high levels of alkaline phosphatase activity under P-limited conditions compared to the repressed levels found in P-rich cells; alkaline phosphatase activity could not be detected in three slow-growing rhizobial strains, regardless of their P-status.Glycerol 1-phosphate-uptake in the cowpea Rhizobium NGR234 was derepressed over 50-fold under P-limited conditions, and appeared to be co-regulated with phosphate uptake.The phosphate-uptake system appeared similar in all strains with apparent K m values ranging from 1.6 M to 6.0 M phosphate and maximum activities from 17.2 to 126 nmol · min-1 · (mg dry weight of cells)-1. Carbonyl cyanide m-chlorophenyl hydrazone strongly inhibited phosphate uptake in all strains and a number of other metabolic inhibitors also decreased phosphate uptake in the cowpea Rhizobium NGR234. The phosphate uptake system in all strains failed to catalyse exchange of 32P label in preloaded cells or efflux of phosphate. The results suggest a single, repressible, unidirectional and energy-dependent system for the transport of phosphate into rhizobia.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulphonic acid  相似文献   

14.
14CO2 assimilation, 14C incorporation into glycolate and glycolate accumulation in -HPMS treated bean leaves at various O2 and CO2 concentrations were studied. In 1% CO2 oxygen concentration had no significant effect on glycolate accumulation and 14C incorporation into glycolate. In the CO2 concentration range of 0.03% to 0.01%, increased oxygen concentration decreased not only 14CO2 assimilation but also glycolate accumulation and 14C incorporation into glycolate. In 1% and 0.1% CO2, no matter what O2 concentration was supplied, and in 0.03% CO2 with 2% and 21% O2, all of the glycolate accumulated was formed from newly assimilated carbon. In 0.01% CO2 and 2%, 21% and 100% O2, and in 0.03% CO2 with 100% O2, a substantial portion of the glycolic acid that accumulated in leaves originated from endogenous unlabelled substrates. These findings are discussed in terms of possible changes in the ratio of RuBP carboxylation to RuBP oxygenation and of changes of RuBP pool size, induced by changing O2 and CO2 concentrations.This work was supported by the Polish Academy of Sciences, Contract No. 10.2.10.  相似文献   

15.
Summary Serratia marcescens was found to degrade kraft lignin by only 15%. When 14C-radiolabelled lignocelluloses and DHP lignins were used as substrates the bacterium mineralized to 14CO2 only 1.1–1.9% and 0.4–0.8% of the lignins respectively. However, some 44.4% of the 14C--DHP lignin was recovered as soluble radiolabelled products.  相似文献   

16.
Srivastava  N.K.  Misra  A.  Sharma  S. 《Photosynthetica》1997,33(1):71-79
Changes in growth, CO2 exchange rate, and distribution of photosynthetically fixed 14CO2 into the primary photosynthetic metabolic pool (sugars, amino acids and organic acids) and essential oil accumulation were determined in leaves (leaf positions 1-6 from apex) of developing peppermint grown in a solution culture at Zn concentrations of 0 and 0.05 g m-3. There was a significant decrease in 14C incorporation in total, ethanol-soluble and ethanol-insoluble fractions in Zn deficient plants at all leaf positions. 14C incorporated in essential oil and in sugars were significantly higher in leaf pairs 1 to 3 than in leaf pairs 4 to 6. 14C incorporation into amino acids and organic acids was higher in all leaf pairs in Zn deficient plants. Statistical analysis showed a positive significant association between Zn content of leaf and 14C incorporation into ethanol-soluble fraction and sugars and a negative correlation with 14C incorporation into amino acids and organic acids. Hence the content of sugars in leaves significantly influences essential oil accumulation under Zn stress. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
Changes in growth parameters and 14CO2 and [U-14C]-sucrose incorporation into the primary metabolic pools and essential oil were investigated in leaves and stems of M. spicata treated with etherel and gibberellic acid (GA). Compared to the control, GA and etherel treatments induced significant phenotypic changes and a decrease in chlorophyll content, CO2 exchange rate, and stomatal conductance. Treatment with etherel led to increased total incorporation of 14CO2 into the leaves wheras total incorporation from 14C sucrose was decreased. When 14CO2 was fed, the incorporation into the ethanol soluble fraction, sugars, organic acids, and essential oil was significantly higher in etherel treated leaves than in the control. However, [U-14C]-sucrose feeding led to decreased label incorporation in the ethanol-soluble fraction, sugars, organic acids, and essential oils compared to the control. When 14CO2 was fed to GA treated leaves, label incorporation in ethanol-insoluble fraction, sugars, and oils was significantly higher than in the control. In contrast, when [U-14C]-sucrose was fed the incorporation in the ethanol soluble fraction, sugars, organic acids, and oil was significantly lower than in the control. Hence the hormone treatment induces a differential utilization of precursors for oil biosynthesis and accumulation and differences in partitioning of label between leaf and stem. Etherel and GA influence the partitioning of primary photosynthetic metabolites and thus modify plant growth and essential oil accumulation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
The degradation of 14C-[ring]-labelled syntheticlignin (14C-DHP) and dissolved organic carbon(DOC) from lake water were studied simultaneously.14C-DHP was incubated in humic lake water (colour173 mg Pt l-1) for 7 d in the dark or under solarradiation. In the dark <0.4% of the introduced14C-DHP label and 4% of the indigenous DOC weremineralized, indicating that the 14C-labelledaromatic rings of DHP and the humic DOC weremicrobiologically recalcitrant. Under solar radiation(116 MJ m-2), 17–21% of the 14C-labelledcarbons in DHP and 18–23% of the indigenous DOC weremineralized in 7 d. Simultaneously the watersolubility of 14C-DHP increased. Solar radiationconverted the aromatic cores of synthetic lignin toCO2 and soluble organic photoproducts. Theresults suggest that solar radiation plays a key rolein the decomposition of natural polyaromatic matter.  相似文献   

20.
Adult Upis ceramboides do not survive freezing in the summer but tolerate freezing to −60 °C in midwinter. The accumulation of two cryoprotective polyols, sorbitol and threitol, is integral to the extraordinary cold-hardiness of this beetle. U. ceramboides are the only animals known to accumulate high concentrations of threitol; however, the biosynthetic pathway has not been studied. A series of 13C-labeled compounds was employed to investigate this biosynthetic pathway using 13C{1H} NMR spectroscopy. In vivo metabolism of 13C-labeled glucose isotopomers demonstrates that C-3—C-6 of glucose become C-1—C-4 of threitol. This labeling pattern is expected for 4-carbon saccharides arising from the pentose phosphate pathway. In vitro experiments show that threitol is synthesized from erythrose 4-phosphate, a C4 intermediate in the PPP. Erythrose 4-phosphate is epimerized and/or isomerized to threose 4-phosphate, which is subsequently reduced by a NADPH-dependent polyol dehydrogenase and dephosphorylated by a sugar phosphatase to form threitol. Threitol 4-phosphate appears to be the preferred substrate of the sugar phosphatase(s), promoting threitol synthesis over that of erythritol. In contrast, the NADPH-dependent polyol dehydrogenase exhibits broad substrate specificity. Efficient erythritol catabolism under conditions that promote threitol synthesis, coupled with preferential threitol biosynthesis, appear to be responsible for the accumulation of high concentrations of threitol (250 mm) without concomitant accumulation of erythritol.Cold-hardy terrestrial insects from temperate to arctic regions exhibit two physiological strategies to survive subzero temperatures: freeze tolerance and freeze avoidance (13). Freeze-tolerant organisms survive ice in their extracellular fluids but are generally susceptible to intracellular freezing (3). Freeze-avoiding insects do not survive freezing of their body fluids and typically supercool beyond the lowest environmental temperature they are likely to experience in nature (4).Both freeze-tolerant and freeze-avoiding insects commonly produce polyols, also known as alditols, to mitigate the effects of low temperature (5). Polyols are biocompatible solutes that lack toxicity, even at molar concentrations, and stabilize native protein structure at low temperature (6). However, the functions of polyols depend on the overwintering strategy. In freeze-tolerant organisms, polyols reduce the fraction of frozen water, thereby preventing excessive intracellular dehydration. In contrast, polyols promote supercooling in freeze-avoiding organisms (5). Glycerol is the most commonly accumulated polyol in both freeze-tolerant and freeze-avoiding insects. However, overwintering insects are taxonomically diverse and produce various polyols in response to low temperature, including ethylene glycol, erythritol, mannitol, ribitol, sorbitol, and threitol (6).The accumulation of sorbitol and threitol in the hemolymph of the freeze-tolerant beetle, Upis ceramboides, is associated with increasing cold tolerance (7). In the summer, when neither sorbitol nor threitol are detectable in the hemolymph, U. ceramboides do not survive freezing. As sorbitol and threitol accumulate in the hemolymph, there is a concomitant decrease in lethal temperature to −60 °C (8).Polyols are typically produced in the fat body by the actions of two enzymes, a NADPH-dependent polyol dehydrogenase and a sugar phosphatase, on a sugar phosphate (e.g. glucose 6-phosphate) in constitutive metabolic pathways such as glycolysis or the pentose phosphate pathway (PPP)2 (9). However, threitol biosynthesis does not fit this pattern because T4P, the putative metabolic precursor of threitol, is not observed in normal constitutive metabolism. Threitol is a biologically rare compound, and U. ceramboides are the only organisms known to accumulate it at high concentrations (∼250 mm) (7, 10), although low concentrations (≤2 μg/mg fresh mass or ∼3 mm) have been reported in the overwintering spruce bark beetle, Ips typographus (11).The threitol biosynthetic pathway has not been fully characterized in any organism. In humans, threitol is the major end product of xylose catabolism and is thought to be produced via the glucuronate pathway (12). Interestingly, xylans, containing predominantly β-(1→4)-linked xylose, are the major saccharide component of hemicellulose in plants (13). Thus, the wood-decomposing U. ceramboides have a potential dietary source of xylose, which could serve as the metabolic precursor of threitol.Despite the absence of experimental evidence, it has been assumed that threitol production in insects involves the PPP. In addition to being a source of 4-carbon monosaccharides, flux through the PPP generates the reducing equivalents (NADPH) needed for polyol biosynthesis (9). However, the broad specificities observed for polyol dehydrogenases (14, 15) and sugar phosphatases (16, 17) lead to the question of how high concentrations of threitol arise from the PPP without the accumulation of other C4 and C5 alditols. Indeed, the ability of various insect species to accumulate high concentrations of a single C4 or C5 alditol originating from the PPP has not been investigated (9).In this study, the threitol biosynthetic pathway in U. ceramboides has been investigated by 13C{1H} NMR spectroscopy using 13C-labeled metabolites. The results elucidate the threitol biosynthetic pathway and lead to a new metabolic model that explains the observed selective accumulation of threitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号