首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The IgM and IgD classes of antigen receptor can perform different functions on B cells. However, so far no class-specific components communicating with the cytoplasm have been found in the two antigen receptors. We have employed a new biotinylation protocol to search for intracellular membrane Ig-associated proteins. Here we describe two proteins of 29 and 31 kDa that are associated with membrane IgD and to some extent with membrane IgM. The membrane IgM molecule is associated specifically with three proteins of 32, 37 and 41 kDa. The purification and sequencing of the two mIgD-associated proteins revealed that they are novel proteins which are related to each other. These proteins may be the missing link between the antigen receptor and the cytoskeleton and may contribute to functional differences between membrane IgM and membrane IgD.  相似文献   

2.
Two members of the B-cell associated 31 (BAP31) family are found in humans; BAP29 and BAP31. These are ubiquitously expressed receptors residing in the endoplasmic reticulum. BAP31 functions in sorting of membrane proteins and in caspase-8 mediated apoptosis, while BAP29 appears to mainly corroborate with BAP31 in sorting. The N-terminal half of these proteins is membrane-bound while the C-terminal half is cytoplasmic. The latter include the so called variant of death effector domain (vDED), which shares weak sequence homology with DED domains. Here we present two structures of BAP31 vDED determined from a single and a twinned crystal, grown at pH 8.0 and pH 4.2, respectively. These structures show that BAP31 vDED forms a dimeric parallel coiled coil with no structural similarity to DED domains. Solution studies support this conclusion and strongly suggest that an additional α-helical domain is present in the C-terminal cytoplasmic region, probably forming a second coiled coil. The thermal stability of BAP31 vDED is quite modest at neutral pH, suggesting that it may assemble in a dynamic fashion in vivo. Surprisingly, BAP29 vDED is partially unfolded at pH 7, while a coiled coil is formed at pH 4.2 in vitro. It is however likely that folding of the domain is triggered by other factors than low pH in vivo. We found no evidence for direct interaction of the cytoplasmic domains of BAP29 and BAP31.  相似文献   

3.
Two classes of immunoglobulin, IgM and IgD, are present as antigen receptors on the surface of mature B lymphocytes. We show here that IgD molecules are noncovalently associated in the B cell membrane with a heterodimer consisting of two proteins of 35 kd (IgD-alpha) and 39 kd (Ig-beta), respectively. The two novel proteins are not found in the IgD-expressing myeloma J558L delta m, which fails to bring IgD antigen receptor onto the cell surface. In a surface IgD positive variant line of this myeloma, however, membrane-bound IgD molecules are associated with the heterodimer, suggesting that the formation of an antigen receptor complex is required for surface IgD expression. We further demonstrate that the IgD-associated heterodimer differs partly from that of the IgM antigen receptor and that its binding to the heavy chain only requires the presence of the last constant domain and the transmembrane part of the delta m chain.  相似文献   

4.
5.
Microsomal cytochrome P450 2C2 is an integral endoplasmic reticulum (ER) membrane protein that is directly retained in the ER and excluded from transport vesicles. We have used bimolecular fluorescence complementation and co-immunoprecipitation to show that a ubiquitous ER membrane protein (BAP31) interacts with P450 2C2 in transfected COS-1 cells. A chimera containing only the N-terminal signal anchor of P450 2C1 (P450 2C1-(1-29)) also interacted with BAP31, which is consistent with interaction of the two proteins via their transmembrane domains. Down-regulation of BAP31 expression with small interfering RNA resulted in redistribution of green fluorescent protein-tagged P450 2C2 or P450 2C1-(1-29) from the ER into the nuclear membrane and compact perinuclear compartment structures as well as the cell surface in a small fraction of the cells. In Bap31-null embryonic stem cells, a significant fraction of P450 2C2 or P450 2C1-(1-29) was detected at the cell surface and nuclear envelope, but was redistributed to the ER by expression of BAP31. The expression level of P450 2C2 was significantly increased in COS-1 cells with repressed levels of BAP31. Formation of the pro-apoptotic p20 fragment of BAP31 was detected in transfected COS-1 cells expressing P450 2C2, and annexin V staining was consistent with the activation of an apoptotic pathway in these cells. Down-regulation of BAP31 with small interfering RNA partially reversed the apoptosis. These results suggest that interaction of P450 2C2 with BAP31 is important for its ER retention and expression level and that BAP31 may be involved in the regulation of apoptosis induced by the ER overload response to increased expression of P450.  相似文献   

6.
Artiodactyl IgD: the missing link   总被引:7,自引:0,他引:7  
  相似文献   

7.
The mammalian B-cell receptor-associated proteins of 29 and 31 kDa (BAP29 and BAP31) are conserved integral membrane proteins that have reported roles in endoplasmic reticulum (ER) quality control, ER export of secretory cargo, and programmed cell death. In this study we investigated the yeast homologs of BAP29 and BAP31, known as Yet1p and Yet3p, to gain insight on cellular function. We found that Yet1p forms a complex with Yet3p (Yet complex) and that complex assembly was important for subunit stability and proper ER localization. The Yet complex was not efficiently packaged into ER-derived COPII vesicles and therefore does not appear to act as an ER export receptor. Instead, a fraction of the Yet complex was detected in association with the ER translocation apparatus (Sec complex). Specific mutations in the Sec complex or Yet complex influenced these interactions. Moreover, associations between the Yet complex and Sec complex were increased by ER stress and diminished when protein translocation substrates were depleted. Surprisingly, yet1Δ and yet3Δ mutant strains displayed inositol starvation-related growth defects. In accord with the biochemical data, these growth defects were exacerbated by a combination of certain mutations in the Sec complex with yet1Δ or yet3Δ mutations. We propose a model for the Yet-Sec complex interaction that places Yet1p and Yet3p at the translocation pore to manage biogenesis of specific transmembrane secretory proteins.  相似文献   

8.
Mature, naive B cells coexpress IgD and IgM with identical binding sites. In this study, the binding properties of such IgM and IgD are compared to determine how size and shape may influence their ability to bind Ag and thus function as receptors. To dissect their intrinsic binding properties, recombinant IgM and IgD were produced in soluble form as monomers of the basic H(2)L(2) Ab architecture, each with two Ag binding sites. Since these sites are connected with a hinge region in IgD and structural Ig domains in IgM, the two molecules differ significantly in this region. The results show that IgD exhibited the larger angle and longer distance between its binding sites, as well as having the greater flexibility. Relative functional affinity was assessed on two antigenic surfaces with high or low epitope density, respectively. At high epitope density, IgM had a higher functional affinity for the Ag compared with IgD. The order was reversed at low epitope density due to a decrease in the functional affinity of IgM. Studies of binding kinetics showed similar association rates for both molecules. The dissociation rate, however, was slower for IgM at high epitope density and for IgD at low epitope density. Taken together, the results show that IgM and IgD with identical Ag binding regions have different Ag binding properties.  相似文献   

9.
In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. Here, we constructed unique split-ubiquitin-linked cDNA libraries and provide details for implementing this system to screen for binding partners of a bait protein, in this case BAP31. BAP31 is a resident integral protein of the endoplasmic reticulum, where it operates as a chaperone or cargo receptor and regulator of apoptosis. Here we describe a novel human member of the protein tyrosine phosphatase-like B (PTPLB) family, an integral protein of the endoplasmic reticulum membrane with four membrane-spanning alpha helices, as a BAP31-interacting protein. PTPLB turns over rapidly through degradation by the proteasome system. Comparisons of mouse cells with a deletion of Bap31 or reconstituted with human BAP31 indicate that BAP31 is required to maintain PTPLB, consistent with a chaperone or quality control function for BAP31 in the endoplasmic reticulum membrane.  相似文献   

10.
Cellubrevin is a ubiquitously expressed membrane protein that is localized to endosomes throughout the endocytotic pathway and functions in constitutive exocytosis. We report that cellubrevin binds with high specificity to BAP31, a representative of a highly conserved family of integral membrane proteins that has recently been discovered to be binding proteins of membrane immunoglobulins. The interaction between BAP31 and cellubrevin is sensitive to high ionic strength and appears to require the transmembrane regions of both proteins. No other proteins of liver membrane extracts copurified with BAP31 on immobilized recombinant cellubrevin, demonstrating that the interaction is specific. Synaptobrevin I bound to BAP31 with comparable affinity, whereas only weak binding was detectable with synaptobrevin II. Furthermore, a fraction of BAP31 and cellubrevin was complexed when each of them was quantitatively immunoprecipitated from detergent extracts of fibroblasts (BHK 21 cells). During purification of clathrin-coated vesicles or early endosomes, BAP31 did not cofractionate with cellubrevin. Rather, the protein was enriched in ER-containing fractions. When BHK cells were analyzed by immunocytochemistry, BAP31 did not overlap with cellubrevin, but rather colocalized with resident proteins of the ER. In addition, immunoreactive vesicles were clustered in a paranuclear region close to the microtubule organizing center, but different from the Golgi apparatus. When microtubules were depolymerized with nocodazole, this accumulation disappeared and BAP31 was confined to the ER. Truncation of the cytoplasmic tail of BAP31 prevented export of cellubrevin, but not of the transferrin receptor from the ER. We conclude that BAP31 represents a novel class of sorting proteins that controls anterograde transport of certain membrane proteins from the ER to the Golgi complex.Exocytotic membrane fusion is mediated by a complex of evolutionary-conserved membrane proteins. In neurons, these proteins include the synaptic vesicle protein synaptobrevin (VAMP) and the synaptic membrane proteins syntaxin and synaptosome-associated protein (SNAP)-25.1 These proteins undergo regulated protein–protein interactions that are controlled by soluble proteins including N-ethylmaleimide-sensitive factor (NSF) and soluble N-ethyl maleimide-sensitive factor attachment (SNAP) proteins (Söllner et al., 1993b ). Relatives of all of these proteins have been discovered in many eukaryotic cells including yeast, suggesting that intracellular membrane fusions may, at least to a large extent, be mediated by common mechanisms (Ferro-Novick and Jahn, 1994; Rothman, 1994; Scheller, 1995). Although the molecular details of membrane fusion are not yet understood, it is becoming clear that the components of the fusion apparatus operate by conformation-dependent assembly and disassembly reactions which ultimately lead to the rearrangement of membrane phospholipids (Söllner et al., 1993a ; Calakos et al., 1994). For these reasons, the interactions between synaptobrevin, SNAP-25, and syntaxin have received considerable attention (for review see Südhof, 1995). These proteins form a tight and stable ternary complex as soon as they have access to each other. Binding probably occurs before or during vesicle docking in preparation for fusion. Incubation with the ATPase NSF and SNAP proteins reversibly disassembles this complex, an event thought to precede membrane fusion (Söllner et al., 1993a ,b).It is less well understood to what extent synaptobrevin, SNAP-25, and syntaxin interact with other proteins, particularly during stages of their life cycle when they are not bound to each other. It is conceivable that companion proteins exist that assist in sorting to the correct compartment or in positioning at the site of release and that control the availability for entering the fusion complex. For syntaxin, interactions with several other proteins were reported, including synaptotagmin munc-18/rbSEC-1, and the N-type Ca2+-channel (Südhof, 1995). For synaptobrevin, it has recently been observed that most of the protein is associated with synaptophysin, an integral membrane protein of yet unknown function that resides alongside synaptobrevin in the synaptic vesicle membrane (Calakos and Scheller, 1994; Edelmann et al., 1995; Washbourne et al., 1995). Although the binary interaction of synaptobrevin with synaptophysin is weaker than its ternary interaction with syntaxin and SNAP-25, synaptophysin-bound synaptobrevin is not available for binding to these proteins (Edelmann et al., 1995). Thus, synaptobrevin participates at least in two different complexes that are mutually exclusive: one with its partners syntaxin and SNAP-25 during membrane fusion, and another with synaptophysin during vesicle recycling and probably also during biogenesis, i.e., during transport of the proteins from the ER to the nerve terminal.It remains to be established whether cellubrevin, a nonneuronal synaptobrevin homologue with widespread distribution, forms partnerships with other proteins with properties similar to the synaptobrevin–synaptophysin complex. Like synaptobrevins, cellubrevin is a small integral membrane protein with a single transmembrane domain at the COOH-terminal end of the molecule. Cellubrevin colocalizes with the transferrin receptor in fibroblasts and is enriched in purified clathrin-coated vesicles (McMahon et al., 1993), suggesting that it resides in constitutive trafficking vesicles shuttling mainly between the plasmalemma and the endosomal compartment (Daro et al., 1996). Like its neuronal counterparts, cellubrevin is selectively cleaved by clostridial neurotoxins including tetanus toxin. Toxin cleavage impairs exocytosis of recycling vesicles in fibroblasts (Galli et al., 1994), whereas fusion of early endosomes appears not to be affected (Link et al., 1993; Jo et al., 1995).Here we report that cellubrevin interacts specifically with a recently characterized integral membrane protein, BAP31. BAP31 and a related protein (BAP29) were first identified as membrane proteins copurifying with membrane-bound immunoglobulin from lysates of β lymphocytes (Kim et al., 1994). Cloning of human and murine BAP31 cDNA showed that BAP31 is an evolutionary-conserved protein which is ubiquitously expressed in all tissues (Adachi et al., 1996). Several open reading frames encoding for proteins with a similar structure and a significant degree of homology are present in the genome of the yeast Saccharomyces cerevisiae, suggesting that BAP31 represents an ancient protein family with basic functions (EMBL/GenBank/DDBJ accession numbers Z28065, Z74120, and Z48502). BAP31 has a hydrophobic NH2 terminus with three potential transmembrane domains and a charged α-helical COOH terminus that is exposed to the cytoplasm. The COOH terminus ends with a KKXX sequence motif typical for proteins transported back to the ER. Indeed, an immunocytochemical analysis revealed that BAP31 exhibits an ER-like staining pattern (Becker, B., and M. Reth, unpublished observations). We show that BAP31, as a resident of the ER and of ER-derived trafficking vesicles, may control the export of cellubrevin from the ER.  相似文献   

11.
A novel surface protein of the bacterial species Moraxella catarrhalis that displays a high affinity for IgD (MID) was solubilized in Empigen and isolated by ion exchange chromatography and gel filtration. The apparent molecular mass of monomeric MID was estimated to approximately 200 kDa by SDS-PAGE. The mid gene was cloned and expressed in Escherichia coli. The complete mid nucleotide gene sequence was determined, and the deduced amino acid sequence consists of 2123 residues. The sequence of MID has no similarity to other Ig-binding proteins and differs from all previously described outer membrane proteins of M. catarrhalis. MID was found to exhibit unique Ig-binding properties. Thus, in ELISA, dot blots, and Western blots, MID bound two purified IgD myeloma proteins, four IgD myeloma sera, and finally one IgD standard serum. No binding of MID was detected to IgG, IgM, IgA, or IgE myeloma proteins. MID also bound to the surface-expressed B cell receptor IgD, but not to other membrane molecules on human PBLs. This novel Ig-binding reagent promises to be of theoretical and practical interest in immunological research.  相似文献   

12.
The low levels of serum IgD found in mice and the lack of a typical DNA switch sequence between C delta and C mu raise the possibility that the generation of murine IgD-secreting cells results from a chance "mistake" rather than a controlled process. The recent observation that injection of mice with purified IgD upregulates IgD receptor expression on helper T cells and enhances the ability of these T cells to induce B cells to differentiate into antibody secreting cells led us to look for evidence of controlled differentiation of B cells into IgD-secreting cells. To do this, we injected mice with a goat antibody to IgD (GaM delta), because this antibody stimulates large increases in IgM, IgG1, IgG2a, and IgE secretion. Mice injected with GaM delta demonstrated a large increase in splenic content of mRNA specific for the secreted form of delta-chain, as well as a greater than 100-fold increase in the percentage of splenic IgD-containing plasmablasts. The secretory IgD response was totally T-dependent. Production of the secretory form of IgD was not seen until 7 days after GaM delta injection, and peaked sharply on day 8, whereas by day 6 IgM secretion had already peaked and IgG1 and IgG2 secretion had attained substantial levels. This observation suggests that: 1) either cells that synthesize large quantities of the secretory form of delta-chain, unlike cells that synthesize large quantities of the secretory forms of gamma-, epsilon-, or alpha-chains, do this without deleting C mu, or, despite the absence of a typical DNA switch sequence between C mu and C delta, controls must exist to effect the C mu deletion and VDJ-C delta joining; and 2) if secreted IgD has a role in the regulation of a humoral immune response it most likely is involved in later processes, such as memory cell generation or response termination, rather than in relatively early processes, such as helper T cell activation.  相似文献   

13.
Spontaneous lymphomas of BALB/c mice, both in vivo tumors and cell lines established in long term tissue cultures, were investigated for their ability to synthesize IgM by using radiolabeled amino acid precursors. Immunoglobulins manufactured by lymphomas K46 and L10A had the m.w. of monomeric IgM and IgM half molecule. Both of these molecules could be immunoprecipitated with class-specific anti-IgM but not anti-IgA or anti-IgG. When precipitated with polyvalent anti-Ig L10A synthesized monomeric immunoglobulins that migrated as two peaks in contrast to their single counterpart precipitated with anti-IgM. The second peak migrated in the region expected for IgD. Monomer and half molecules were composed of similar ratios of mu-chains to light chains linked by disulfide bonds. The mu2L2 monomer of these B cell lines migrated slightly slower in SDS PAGE than a mu2L2 secreted by a myeloma. Thus, these lymphomas synthesize immunoglobulins with the chemical and antigenic characteristics typical of monomeric membrane-attached IgM and IgM half molecules, plus a molecule resembling IgD on L10A only. Lymphoma assembly of monomeric IgM may follow the same initial biosynthetic sequence as myeloma assembly.  相似文献   

14.
When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208–217, while α-BAP31 recognized C-terminal residues 165–246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.  相似文献   

15.
BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two caspase recognition sites that are preferentially cleaved by initiator caspases, such as caspase-8. Recently, we reported that the caspase-resistant BAP31 inhibited Fas-mediated apoptotic membrane fragmentation and the release of cytochrome c from mitochondria in KB epithelial cells (Nguyen M., Breckenridge G., Ducret A & Shore G. (2000) Mol. Cell. Biol.20, 6731-6740). We describe here the characterization by capillary liquid chromatography microelectrospray tandem MS of a BAP31 immunocomplex isolated from a HepG2 cell lysate in the absence of a death signal. We show that BAP31 specifically associates with nonmuscle myosin heavy chain B and nonmuscle gamma-actin, two components of the cytoskeleton actomyosin complex. Collectively, these data confirm that BAP31, in addition to its potential role as a chaperone, may play a fundamental role in the structural organization of the cytoplasm. Here we also show that Fas stimulation of apoptosis releases BAP31 associations with these motor proteins, a step that may contribute to extranuclear events, such as membrane remodelling, during the execution phase of apoptosis.  相似文献   

16.
Wang B  Heath-Engel H  Zhang D  Nguyen N  Thomas DY  Hanrahan JW  Shore GC 《Cell》2008,133(6):1080-1092
BAP31 is an endoplasmic reticulum protein-sorting factor that associates with newly synthesized integral membrane proteins and controls their fate (i.e., egress, retention, survival, or degradation). BAP31 is itself an integral membrane protein and a constituent of several large protein complexes. Here, we show that a part of the BAP31 population interacts with two components of the Sec61 preprotein translocon, Sec61beta and TRAM. BAP31 associates with the N terminus of one of its newly synthesized client proteins, the DeltaF508 mutant of CFTR, and promotes its retrotranslocation from the ER and degradation by the cytoplasmic 26S proteasome system. Depletion of BAP31 reduces the proteasomal degradation of DeltaF508 and permits a significant fraction of the surviving protein to reach the cell surface. Of note, BAP31 also associates physically and functionally with the Derlin-1 protein disclocation complex in the DeltaF508 degradation pathway. Thus, BAP31 operates at early steps to deliver newly synthesized CFTRDeltaF508 to its degradation pathway.  相似文献   

17.
The internalization of surface immunoglobulin (Ig) by B lymphocytes is the first step in the antigen-presenting function performed by these cells. Mature B cells coexpress on their surface IgM and IgD. At this time, there is controversy over whether these two isotypes serve different functions in the antigen-presenting process. The results presented here show that the intracellular pattern of distribution of IgM and IgD after internalization is strikingly different in the B cell lines studied. These findings support the hypothesis that the role of the two Ig classes in the antigen-presenting function may be different.  相似文献   

18.
pOMD29 is a hybrid protein containing the NH2-terminal topogenic sequence of a bitopic, integral protein of the outer mitochondrial membrane in yeast, OMM70, fused to dihydrofolate reductase. The topogenic sequence consists of two structural domains: an NH2-terminal basic region (amino acids 1-10) and an apolar region which is the predicted transmembrane segment (amino acids 11-29). The transmembrane segment alone was capable of targeting and inserting the hybrid protein into the outer membrane of intact mitochondria from rat heart in vitro. The presence of amino acids 1-10 enhanced the rate of import, and this increased rate depended, in part, on the basic amino acids located at positions 2, 7, and 9. Deletion of a large portion of the transmembrane segment (amino acids 16-29) resulted in a protein that exhibited negligible import in vitro. Insertion of pOMD29 into the outer membrane was not competed by import of excess precursor protein destined for the mitochondrial matrix, indicating that the two proteins may have different rate-limiting steps during import. We propose that the structural domains within amino acids 1-29 of pOMD29 cooperate to form a signal-anchor sequence, the characteristics of which suggest a model for proper sorting to the mitochondrial outer membrane.  相似文献   

19.
Studies presented here demonstrate that IgM and IgD molecules on normal murine B lymphocytes exist in different, noncovalently associated molecular complexes containing distinct but potentially related glycoproteins. The glycoproteins in these complexes, particularly those associated with IgD, show striking differences in various lymphoid organs and in X-linked immunodeficient (Xid) mice. These differences are due in part to post-translational processing. They apparently reflect the differential expression of the Ig-associated glycoproteins in the various B cell subpopulations and lineages and the differential distribution of the subpopulations and lineages in the various lymphoid organs. In addition, they reflect structural differences in the IgM and IgD complexes which, we suggest, permit differential signal transduction by IgM and IgD on the same B cell.  相似文献   

20.
A cDNA containing the gene for Japanese flounder IgD consisted of 3240 bp encoding 998 amino acid residues. The amino acid sequence of the constant region of Japanese flounder IgD shares 38-80% identity with the sequences of previously reported teleost IgDs. The structure of the constant region of Japanese flounder IgD, which contains the micro1, delta1, delta2, delta3, delta4, delta5, delta6, delta7, and TM regions, is similar to the structures of the constant regions of the IgDs of channel catfish and Atlantic salmon. Southern blot hybridisation showed that the Japanese flounder IgD gene exists as a single locus. The Japanese flounder IgD gene was mainly detected in peripheral blood leucocytes (PBLs) and small amounts were detected in the spleen, head and trunk kidney, although IgM mRNA was detected in similar amounts in PBLs, the head kidney, and spleen. The copy number of IgM mRNA in Japanese flounder PBL was 56-fold higher than that of IgD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号