首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Caenorhabditis elegans gene ubc-25 encodes a novel type of an E2 ubiquitin transferase domain (UBCc) protein, which is highly conserved in multicellular animals, but which is not present in the genomes of fungi or plants. To identify the cellular localization of UBC-25 during the development of C. elegans, we used a ubc-25::gfp reporter gene construct. These experiments showed that ubc-25 expression starts during embryogenesis and that it is restricted to neurons and muscle cells in all later stages of development as well as in adult animals. RNA interference with ubc-25 caused late-onset paralysis of most muscular functions such as locomotion, egg laying, and defecation. We therefore propose that ubc-25 in C. elegans is required for the maintenance (homeostasis) of neuromuscular functions by contributing to a tissue specific protein modification pathway, and we speculate that the adult onset phenotype results from the accumulation of target proteins which fail to be degraded.  相似文献   

3.
In a yeast two-hybrid screen, RING finger protein 1 (RFP-1) and UBR1 were identified as potential binding partners of C. elegans UBC-1, a ubiquitin-conjugating enzyme with a high degree of identity to S. cerevisiae UBC2/RAD6. The interaction of RFP-1 and UBC-1 was confirmed by co-immunoprecipitation experiments. Yeast interaction trap experiments mapped the region of interaction to the basic N-terminal 313 residues of RFP-1. The acidic carboxy-terminal extension of UBC-1 was not required for the interaction with RFP-1. Western blot analysis and indirect immunohistochemical staining show that RFP-1 is present in embryos, larvae, and adults, where it is found in intestinal, nerve ring, pharyngeal, gonadal, and oocyte cell nuclei. Double-stranded RNA interference experiments against rfp-1 indicate that this gene is required for L1 development, vulval development, and for egg laying. By contrast, RNA interference against ubc-1 gave no obvious phenotype, suggesting that ubc-1 is nonessential or is functionally redundant.  相似文献   

4.
The Wnts          下载免费PDF全文

Background

The eukaryotic ubiquitin-conjugation system sets the turnover rate of many proteins and includes activating enzymes (E1s), conjugating enzymes (UBCs/E2s), and ubiquitin-protein ligases (E3s), which are responsible for activation, covalent attachment and substrate recognition, respectively. There are also ubiquitin-like proteins with distinct functions, which require their own E1s and E2s for attachment. We describe the results of RNA interference (RNAi) experiments on the E1s, UBC/E2s and ubiquitin-like proteins in Caenorhabditis elegans. We also present a phylogenetic analysis of UBCs.

Results

The C. elegans genome encodes 20 UBCs and three ubiquitin E2 variant proteins. RNAi shows that only four UBCs are essential for embryogenesis: LET-70 (UBC-2), a functional homolog of yeast Ubc4/5p, UBC-9, an ortholog of yeast Ubc9p, which transfers the ubiquitin-like modifier SUMO, UBC-12, an ortholog of yeast Ubc12p, which transfers the ubiquitin-like modifier Rub1/Nedd8, and UBC-14, an ortholog of Drosophila Courtless. RNAi of ubc-20, an ortholog of yeast UBC1, results in a low frequency of arrested larval development. A phylogenetic analysis of C. elegans, Drosophila and human UBCs shows that this protein family can be divided into 18 groups, 13 of which include members from all three species. The activating enzymes and the ubiquitin-like proteins NED-8 and SUMO are required for embryogenesis.

Conclusions

The number of UBC genes appears to increase with developmental complexity, and our results suggest functional overlap in many of these enzymes. The ubiquitin-like proteins NED-8 and SUMO and their corresponding activating enzymes are required for embryogenesis.  相似文献   

5.
The retinoblastoma gene product has been implicated in the regulation of multiple cellular and developmental processes, including a well-defined role in the control of cell cycle progression. The Caenorhabditis elegans retinoblastoma protein homolog, LIN-35, is also a key regulator of cell cycle entry and, as shown by studies of synthetic multivulval genes, plays an important role in the determination of vulval cell fates. We demonstrate an additional and unexpected function for lin-35 in organ morphogenesis. Using a genetic approach to isolate lin-35 synthetic-lethal mutations, we have identified redundant roles for lin-35 and ubc-18, a gene that encodes an E2 ubiquitin-conjugating enzyme closely related to human UBCH7. lin-35 and ubc-18 cooperate to control one or more steps during pharyngeal morphogenesis. Based on genetic and phenotypic analyses, this role for lin-35 in pharyngeal morphogenesis appears to be distinct from its cell cycle-related functions. lin-35 and ubc-18 may act in concert to regulate the levels of one or more critical targets during C. elegans development.  相似文献   

6.
W. G. Kelly  S. Xu  M. K. Montgomery    A. Fire 《Genetics》1997,146(1):227-238
In screening for embryonic-lethal mutations in Caenorhabditis elegans, we defined an essential gene (let-858) that encodes a nuclear protein rich in acidic and basic residues. We have named this product nucampholin. Closely homologous sequences in yeast, plants, and mammals demonstrate strong evolutionary conservation in eukaryotes. Nucampholin resides in all nuclei of C. elegans and is essential in early development and in differentiating tissue. Antisense-mediated depletion of LET-858 activity in early embryos causes a lethal phenotype similar to characterized treatments blocking embryonic gene expression. Using transgene-rescue, we demonstrated the additional requirement for let-858 in the larval germline. The broad requirements allowed investigation of soma-germline differences in gene expression. When introduced into standard transgene arrays, let-858 (like many other C. elegans genes) functions well in soma but poorly in germline. We observed incremental silencing of simple let-858 arrays in the first few generations following transformation and hypothesized that silencing might reflect recognition of arrays as repetitive or heterochromatin-like. To give the transgene a more physiological context, we included an excess of random genomic fragments with the injected DNA. The resulting transgenes show robust expression in both germline and soma. Our results suggest the possibility of concerted mechanisms for silencing unwanted germline expression of repetitive sequences.  相似文献   

7.
8.
9.
BACKGROUND: The let-7 and lin-4 microRNAs belong to a class of temporally expressed, noncoding regulatory RNAs that function as heterochronic switch genes in the nematode C. elegans. Heterochronic genes control the relative timing of events during development and are considered a major force in the rapid evolution of new morphologies. let-7 is highly conserved and in Drosophila is temporally coregulated with the lin-4 homolog, miR-125. Little is known, however, about their requirement outside the nematode or whether they universally control the timing of developmental processes. RESULTS: We report the generation of a Drosophila mutant that lacks let-7 and miR-125 activities and that leads to a pleiotropic phenotype arising during metamorphosis. We focus on two defects and demonstrate that loss of let-7 and miR-125 results in temporal delays in two distinct metamorphic processes: the terminal cell-cycle exit in the wing and maturation of neuromuscular junctions (NMJs) at adult abdominal muscles. We identify the abrupt (ab) gene, encoding a nuclear protein, as a bona fide let-7 target and provide evidence that let-7 governs the maturation rate of abdominal NMJs during metamorphosis by regulating ab expression. CONCLUSIONS: Drosophila Iet-7 and miR-125 mutants exhibit temporal misregulation of specific metamorphic processes. As in C. elegans, Drosophila let-7 is both necessary and sufficient for the appropriate timing of a specific cell-cycle exit, indicating that its function as a heterochronic microRNA is conserved. The ab gene is a target of let-7, and its repression in muscle is essential for the timing of NMJ maturation during metamorphosis. Our results suggest that let-7 and miR-125 serve as conserved regulators of events necessary for the transition from juvenile to adult life stages.  相似文献   

10.
From 10,900 F1 progeny of ethyl methanesulfonate (EMS)-mutagenized Caenorhabditis elegans nematodes, we isolated 194 lethal mutations on the left arm of LGV, a region balanced by the reciprocal translocation of eT1. The analysis of 166 of those mutations resulted in the identification of one deficiency and alleles of 78 genes including 38 new genes, thus increasing the number of identified essential genes to 101. We estimate that there are a minimum of 120 essential genes in this region, which comprises approximately 7% of the recombinational distance, although only about 4.2% of the genes, in C. elegans. We calculate that there are a minimum of 2850 essential genes in the genome. The left arm of LGV has two recombinational gene clusters separated by a high-recombination and/or essential gene-sparse region. One gene in this region, let-330, is the largest EMS target on the left arm of LGV, with twice as many alleles (16) as the next most EMS-mutable genes, let-332 and rol-3. Another gene in the sparse region, lin-40, and the region near lin-40 are major targets for Tc1 mobilization-induced mutagenesis. The analysis of essential genes in large regions should help to define C. elegans in terms of all its genes and aid in the understanding of the relationship of genome structure to genome function.  相似文献   

11.
The let-7 microRNA (miRNA) gene of Caenorhabditis elegans controls the timing of developmental events. let-7 is conserved throughout bilaterian phylogeny and has multiple paralogs. Here, we show that the paralog mir-84 acts synergistically with let-7 to promote terminal differentiation of the hypodermis and the cessation of molting in C. elegans. Loss of mir-84 exacerbates phenotypes caused by mutations in let-7, whereas increased expression of mir-84 suppresses a let-7 null allele. Adults with reduced levels of mir-84 and let-7 express genes characteristic of larval molting as they initiate a supernumerary molt. mir-84 and let-7 promote exit from the molting cycle by regulating targets in the heterochronic pathway and also nhr-23 and nhr-25, genes encoding conserved nuclear hormone receptors essential for larval molting. The synergistic action of miRNA paralogs in development may be a general feature of the diversified miRNA gene family.  相似文献   

12.
Piekny AJ  Wissmann A  Mains PE 《Genetics》2000,156(4):1671-1689
let-502 rho-binding kinase and mel-11 myosin phosphatase regulate Caenorhabditis elegans embryonic morphogenesis. Genetic analysis presented here establishes the following modes of let-502 action: (i) loss of only maternal let-502 results in abnormal early cleavages, (ii) loss of both zygotic and maternal let-502 causes elongation defects, and (iii) loss of only zygotic let-502 results in sterility. The morphogenetic function of let-502 and mel-11 is apparently redundant with another pathway since elimination of these two genes resulted in progeny that underwent near-normal elongation. Triple mutant analysis indicated that unc-73 (Rho/Rac guanine exchange factor) and mlc-4 (myosin light chain) act in parallel to or downstream of let-502/mel-11. In contrast mig-2 (Rho/Rac), daf-2 (insulin receptor), and age-1 (PI3 kinase) act within the let-502/mel-11 pathway. Mutations in the sex-determination gene fem-2, which encodes a PP2c phosphatase (unrelated to the MEL-11 phosphatase), enhanced mutations of let-502 and suppressed those of mel-11. fem-2's elongation function appears to be independent of its role in sexual identity since the sex-determination genes fem-1, fem-3, tra-1, and tra-3 had no effect on mel-11 or let-502. By itself, fem-2 affects morphogenesis with low penetrance. fem-2 blocked the near-normal elongation of let-502; mel-11 indicating that fem-2 acts in a parallel elongation pathway. The action of two redundant pathways likely ensures accurate elongation of the C. elegans embryo.  相似文献   

13.
lin-28 is a conserved regulator of cell fate succession in animals. In Caenorhabditis elegans, it is a component of the heterochronic gene pathway that governs larval developmental timing, while its vertebrate homologs promote pluripotency and control differentiation in diverse tissues. The RNA binding protein encoded by lin-28 can directly inhibit let-7 microRNA processing by a novel mechanism that is conserved from worms to humans. We found that C. elegans LIN-28 protein can interact with four distinct let-7 family pre-microRNAs, but in vivo inhibits the premature accumulation of only let-7. Surprisingly, however, lin-28 does not require let-7 or its relatives for its characteristic promotion of second larval stage cell fates. In other words, we find that the premature accumulation of mature let-7 does not account for lin-28's precocious phenotype. To explain let-7's role in lin-28 activity, we provide evidence that lin-28 acts in two steps: first, the let-7-independent positive regulation of hbl-1 through its 3'UTR to control L2 stage-specific cell fates; and second, a let-7-dependent step that controls subsequent fates via repression of lin-41. Our evidence also indicates that let-7 functions one stage earlier in C. elegans development than previously thought. Importantly, lin-28's two-step mechanism resembles that of the heterochronic gene lin-14, and the overlap of their activities suggests a clockwork mechanism for developmental timing. Furthermore, this model explains the previous observation that mammalian Lin28 has two genetically separable activities. Thus, lin-28's two-step mechanism may be an essential feature of its evolutionarily conserved role in cell fate succession.  相似文献   

14.
15.
Recognition of the 5'-cap structure of mRNA by eIF4E is a critical step in the recruitment of most mRNAs to the ribosome. In Caenorhabditis elegans, approximately 70% of mRNAs contain an unusual 2,2,7-trimethylguanosine cap structure as a result of trans-splicing onto the 5' end of the pre-mRNA. The characterization of three eIF4E isoforms in C. elegans (IFE-1, IFE-2, and IFE-3) was reported previously. The present study describes two more eIF4E isoforms expressed in C. elegans, IFE-4 and IFE-5. We analyzed the requirement of each isoform for viability by RNA interference. IFE-3, the most closely related to mammalian eIF4E-1, binds only 7-methylguanosine caps and is essential for viability. In contrast, three closely related isoforms (IFE-1, IFE-2, and IFE-5) bind 2,2, 7-trimethylguanosine caps and are partially redundant, but at least one functional isoform is required for viability. IFE-4, which binds only 7-methylguanosine caps, is most closely related to an unusual eIF4E isoform found in plants (nCBP) and mammals (4E-HP) and is not essential for viability in any combination of IFE knockout. ife-2, ife-3, ife-4, and ife-5 mRNAs are themselves trans-spliced to SL1 spliced leaders. ife-1 mRNA is trans-spliced to an SL2 leader, indicating that its gene resides in a downstream position of an operon.  相似文献   

16.
The lin-4 and let-7 small temporal RNAs play a central role in controlling the timing of Caenorhabditis elegans cell fate decisions. let-7 has been conserved through evolution, and its expression correlates with adult development in bilateral animals, including Drosophila [Nature 408 (2000), 86]. The best match for lin-4 in Drosophila, miR-125, is also expressed during pupal and adult stages of Drosophila development [Curr. Biol. 12 (2002), 735]. Here, we ask whether the steroid hormone ecdysone induces let-7 or miR-125 expression at the onset of metamorphosis, attempting to link a known temporal regulator in Drosophila with the heterochronic pathway defined in C. elegans. We find that let-7 and miR-125 are coordinately expressed in late larvae and prepupae, in synchrony with the high titer ecdysone pulses that initiate metamorphosis. Unexpectedly, however, their expression is neither dependent on the EcR ecdysone receptor nor inducible by ecdysone in cultured larval organs. Although let-7 and miR-125 can be induced by ecdysone in Kc tissue culture cells, their expression is significantly delayed relative to that seen in the animal. let-7 and miR-125 are encoded adjacent to one another in the genome, and their induction correlates with the transient appearance of an approximately 500-nt RNA transcribed from this region, providing a mechanism to explain their precise coordinate regulation. We conclude that a common precursor RNA containing both let-7 and miR-125 is induced independently of ecdysone in Drosophila, raising the possibility of a temporal signal that is distinct from the well-characterized ecdysone-EcR pathway.  相似文献   

17.
18.
This work has identified the enzymes involved in the activation and conjugation of the ubiquitin-like protein NED-8 in Caenorhabditis elegans. A C. elegans conjugating enzyme, UBC-12, is highly specific in its ability to utilize NED-8 as a substrate. Immunostaining shows that NED-8 is conjugated in vivo to a major target protein with a conjugate size of 90 kDa. While the amount of this conjugate is developmentally regulated with reduced levels in the larval stages, the mRNA encoding C. elegans UBC-12 is constitutively produced throughout development, as is NED-8 itself. The importance of the NED-8 conjugating system in C. elegans was determined by RNA interference (RNAi) assays using double-stranded RNA encoding NED-8, UBC-12, or the NED-8 activating enzyme component ULA-1. The progeny of both ned-8 and ubc-12 RNAi-treated hermaphrodites either arrested during embryonic development or underwent abnormal postembryonic development. The effect on postembryonic development was pleiotropic, the most frequent gross abnormality being vulval eversion during the L4 stage. Individuals with an everted vulva either burst at the L4 to adult molt or gave rise to adults incapable of egg laying. Additionally, both ned-8 and ubc-12 RNAi induced a striking abnormality in the alae, structures produced by the lateral hypodermal seam cells in the adult nematode. Affected alae were patchy and frequently diverged around a central space. Vulval defects were also produced by RNAi directed at C. elegans ula-1. This is the first demonstration of a requirement for NED-8 conjugation in metazoan development.  相似文献   

19.
Members of the hect domain protein family are characterized by sequence similarity of their C-terminal regions to the C terminus of E6-AP, an E3 ubiquitin-protein ligase. An essential intermediate step in E6-AP-dependent ubiquitination is the formation of a thioester complex between E6-AP and ubiquitin in the presence of distinct E2 ubiquitin-conjugating enzymes including human UbcH5, a member of the UBC4/UBC5 subfamily of E2s. Similarly, several hect domain proteins, including Saccharomyces cerevisiae RSP5, form ubiquitin thioester complexes, indicating that hect domain proteins in general have E3 activity. We show here, by the use of chimeric E2s generated between UbcH5 and other E2s, that a region of UbcH5 encompassing the catalytic site cysteine residue is critical for its ability to interact with E6-AP and RSP5. Of particular importance is a phenylalanine residue at position 62 of UbcH5 that is conserved among the members of the UBC4/UBC5 subfamily but is not present in any of the other known E2s, whereas the N-terminal 60 amino acids do not contribute significantly to the specificity of these interactions. The conservation of this phenylalanine residue throughout evolution underlines the importance of the ability to interact with hect domain proteins for the cellular function of UBC4/UBC5 subfamily members.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号