首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of suitable plants that can extract and concentrate excess P from contaminated soil serves as an attractive method of phytoremediation. Plants vary in their potential to assimilate different organic and inorganic P-substrates. In this study, the response of Duo grass (Duo festulolium) to variable rates of soil-applied potassium dihydrogen phosphate (KH2PO4) on biomass yield and P uptake were studied. Duo grown for 5 weeks in soil with 2.5, 5 and 7.5 g KH2PO4 kg?1 soil showed a significantly higher biomass and shoot P content of 8.3, 11.4 and 12.3 g P kg?1 dry weight respectively compared to plants that received no soil added P. Also, the ability of Duo to metabolize different forms of P-substrates was determined by growing them in sterile Hoagland's agar media with different organic and inorganic P-substrates, viz. KH2PO4, glucose-1-phosphate (G1P), inositiol hexaphosphate (IHP), adenosine triphosphate (ATP) and adenosine monophosphate (AMP) for 2 weeks. Plants on agar media with different P-substrates also showed enhanced biomass yield and shoot P relative to no P control and the P uptake was in the order of ATP > KH2PO4 > G1P > IHP = AMP > no P control. The activities of both phytase (E.C.3.1.3.26) and acid phosphatases (E.C.3.1.3.2) were higher in all the P received plants than the control. Duo grass is capable of extracting P from the soil and also from the agar media and thus it can serve as possible candidate for phytoextraction of high P-soil.  相似文献   

2.
《农业工程》2022,42(5):501-510
27 points were surveyed, and then algae and seawater samples were collected in Hai-tan Strait. The correlation on HAB (harmful algae blooms) species and environmental factors were studied. Water temperature (T) and salinity (S) ranging from 11.9 °C to 27.8 °C and 20.4 to 33.7 in the year, respectively. Dissolved inorganic nitrogen (DIN) in surface water ranged from 0.098 to 0.776 mg·L?1, PO4-P ranged from 0.0016 to 0.0729 mg·L?1. And Eutrophication index (E) ranged from 0.03 to 13.8, varied different. 102 species of algae belonging to 4 classes and 52 genera were identified. The diversity was increasingly from winter to summer, decreasingly from summer to autumn, highest in summer. 49 species of red tide organisms were found in Hai-tan Strait, main two classes were Bacillariophyta and Pyrrophyta. Ceratium tripos and Noctiluca scintillans were dominant species in spring, Skeletonema costatum was common, and was also mainly HABs dominant species in summer, autumn and winter. Pearson correlation and Canonical correspondence analysis (CCA) showed that environment factors had significant correlation with dominance HABs species in different extent, and the ordination result was that S(Salinity) > T(Temperature) > pH > E(Eutrophication index) > DO(dissolved oxygen) > DIN > PO4-P. Prorocentrum donghaiense, Skeletonema costatum, Noctiluca scintillans and Karenia mikimotoi caused many times red tide in 2011 to 2016. However, Prorocentrum donghaiense and Karenia mikimotoi cell density was low in survey year. North of the strait and east coast of the southern strait were sensitive sea area of red tide. The work highlights for the first time ecological characteristic of HAB was studied in Hai-tan Strait. Further, the data and results of this study will help us to improve efficiency for controlling HAB. Even, it is worthwhile to the management and response to the red tide disaster. Ordination result can also be a good indicator of ecological risk.  相似文献   

3.
Summary

Selected limnological attributes of the Okavango Delta panhandle were measured during a brief summer survey of “open-water” habitats extending from the permanent mainstream channel, through contiguous off-channel lagoons and still backwaters, to seasonally isolated floodplain lagoon and temporary pool biotopes on the left-bank of the Okavango River at Seronga.

Wide ranges in most determinants were evident along this profile:- temperature (27–34°C); conductivity(4–12.7mS m?1); pH(5.7–9.2); transparency(0.2–>2.5 m Secchi depth); dissolved oxygen (20–220% saturation); PO4-P (61–110 μg ??1): SiO2—Si (6.9–14.0 mg ??1): NH4-N (30–44 μg ??1): chlorophyll (1.3–183 μ.g ??1). Zooplankton was variably diverse (species richness from ≥ 3 to 20), comprising both euplanktonic (Bosmina, Ceriodaphnia, Daphnia, Diaphanosoma, Moina, Mesocyclops, Thermocyclops, Tropodiaptomus) and more typical epiphytic crustacean taxa (Alona, Macrothrix, Pleuroxus), along with various rotifers (Brachionus, Hexarthra, Keratella, Trichocera) and other taxa (Arcella, Ostracoda. Chaoborus). Abundance varied widely between habitats. The littoral macrozoobenthos showed surprisingly low diversity, and was dominated by freshwater shrimps (Caridina).

Substantial allochthonous inputs to the Okavango swamps were evident from the significant concentrations of total suspended solids (7.6–12.6 mg ??1 , organic content of 33–41%) carried by the mainstream Okavango River during the survey.  相似文献   

4.
《Aquatic Botany》2001,69(2-4):235-249
Chemical characteristics of soils and soil pore waters, plant species composition and horizontal stand structure were investigated for three reed stands in the Třeboň Basin (Czech Republic): Branná sand pit and two littoral stands of Rožmberk fishpond (Rožmberk East and Rožmberk West). Phragmites stands were expanding, stable and retreating at the three sites, respectively. The elemental soil composition (especially of C, N, P, and K) indicated the lowest trophic conditions at Branná, intermediate at Rožmberk East and the highest at Rožmberk West. This corresponded well also with concentrations of ammonium nitrogen, dissolved reactive phosphate and total phosphorus in the soil pore water. In contrast, Branná had by far the highest level of total nitrogen, determined by nitrate nitrogen (20 mg l−1), and the highest level of total dissolved solids (concentrations of NO3, SO42−, Ca2+ and Mg2+) of all three sites. No conspicuous differences were found among the three stands in biomass and its allocation. The vegetation composition corresponded more closely to elemental soil composition than to total nitrogen or total dissolved solids in the pore water. It is concluded that Branná provides an example of a site subjected to an initiating but dramatic and fast eutrophication while conditions at the two Rožmberk sites indicate a slower but longer lasting eutrophication. Owing to continuous heavy organic loading, Rožmberk West represents a hypertrophic site characterised by the highest levels of organic matter and associated characteristics (soil C, N, P, K, dissolved P), but also by the most severe lack of oxygen of the three sites.  相似文献   

5.
Macroalgae of the genus Gracilaria have considerable economic importance as raw material for agar production and belong to an important group of organisms that are tolerant of high concentrations of metal. The median inhibitory concentration (IC50) values obtained by measuring the ratio of fresh mass variation (i.e., daily growth rates) of the red macroalga Gracilaria domingensis during a 48-h aquatic toxicity assay are reported here. The alga was exposed to 14 different metal cations as well as the molybdate anion in synthetic seawater. The actual concentrations of these ionic species (at IC50 values) and the proportion of free ions (aqueous complexes) were determined by inductively coupled plasma atomic emission spectroscopy and the Environmental Protection Agency-recommended software, MINTEQA2, respectively. Based on the free IC50 values (IC50 F), the ions were ranked in terms of toxicity: Cd2+???Cu2+???Pb2+???Zn2+???Ni2+?>?Co2+?>?La3+???Mn2+?>?Ca2+?~?Li+???MoO4 2????Sr2+?>?Mg2+???K+?>?Na+. As a member of the first trophic level in the marine food chain, G. domingensis is an appropriate target organism both for the development of toxicological assays and as a bioindicator of marine degradation.  相似文献   

6.

Scutellum derived calli of recalcitrant indica rice variety ASD-16 are subjected to qualitative and quantitative changes using different callus induction media (CIM). The suitable media for generation of regenerating calli by evaluating the increase in size of these calli as a function of time (MeazureTM2.0 software), were recorded (till 25-days post-inoculation). After 10-days post-inoculation significant differences which ranged from 5 mm to 6.5 mm and 30% variation in calliQuery size were recorded for different CIM. Improved regeneration achieved by reducing the time on callusing media to 5-days and 10-days. Also, the insights are provided for the role of cationic and anionic strength, phenomics of somatic embryogenesis, and also browning of the calli for recalcitrant indica rice variety ASD-16. The statistical analysis of size of calli with ionic strength of cations K+, H+, NH4+, Mg2+, Ca2+ and anions PO43?, NO3?, Cl? (statistical analysis tool “The Unscramble X”) shows positive correlation. The loss of scutellum derived calli due to browning was reduced by allowing the mature seed used for generation of calli to be attached to the growing calli. The browning of the calli was monitored in different media for the pattern, and statistical evidences are provided for the important role played by ionic ratios of media constituent namely, NH4+/NO3? and SO42?/PO43? (reported here for the first time). Maximum healthy calli obtained (80%) were on CIM-2 whereas maximal browning (60%) was obtained on CIM-4 after 15-days post-inoculation. Successful regeneration is achieved for recalcitrant indica rice variety ASD-16.

  相似文献   

7.
Discharge of wastewater from electroplating and leather industries is a major concern for the environment due to the presence of toxic Cr6+ and other ions, such as sulfate, nitrate, phosphate, etc. This study evaluated the potential of Tradescantia pallida, a plant species known for its Cr bioaccumulation, for the simultaneous removal of Cr6+, SO42?, NO3?, and PO43?. The effect of different co-ions on Cr6+ removal by T. pallida was examined following the Plackett-Burman design of experiments carried out under batch hydroponics conditions. The results revealed a maximum removal of 84% Cr6+, 87% SO42?, 94% NO3? and 100% PO43? without any phytotoxic effect on the plant for an initial Cr6+ concentration in the range 5–20 mg L?1. SO42? and NO3? enhanced Cr uptake at a high initial Cr concentration (20 mg L?1), whereas PO43? did not affect Cr uptake both at high and low initial Cr concentrations. The Cr6+ removal kinetics in the presence of different ions was well described by the pseudo-second-order kinetic model which revealed that both biosorption and bioaccumulation of the metal played an important role in Cr6+ removal. Increase in the total carbohydrate and protein content of the plant following Cr6+ and co-ions exposure indicated a good tolerance of the plant toward Cr6+ toxicity. Furthermore, enhancement in the lipid peroxidation and catalase activity in T. pallida upon Cr6+ exposure revealed a maximum stress-induced condition in the plant. Overall, this study demonstrated a very good potential of the plant T. pallida for Cr6+ removal from wastewater even in the presence of co-ions.  相似文献   

8.
Rural areas of developing countries require low-cost treatment systems to purify wastewater which is contaminated with pesticides and organic matter. This work evaluated for six months the simultaneous removal of chlorpyrifos and dissolved organic matter in water using four horizontal sub-surface flow constructed wetlands (SSFCW) at a pilot scale, that were planted with Phragmites australis at 20 ± 2 °C water temperature. In each wetland, three concentrations of chlorpyrifos and three of dissolved organic carbon (DOC) were tested by liquid chromatography and an organic carbon analyzer respectively. The pesticide and DOC were added to the wetlands in synthetic wastewater. For the experiments, four wetlands of equal dimensions were used, with granular material of igneous rocks, 3.9–6.4 mm in diameter and at a depth of 0.3 m with a layer of water 0.2 m deep. For each treatment, regular sampling was carried out for the influent and effluents. As a supporting feature NH4+, NO3? and PO43? were quantified and in situ measurements of dissolved oxygen (DO), pH, electrical conductivity, water temperature and redox potential were taken. The overall removal of the chlorpyrifos (92.6%) and DOC (93.2%) was high, as was DOC removal as a function of pesticide concentration in the influent. The minimum magnitude (92.0%) was reached with 425.6 μg L?1 of chlorpyrifos and, with the highest pesticide removal (96.8%). At lower concentrations of the agrochemical, DOC removal increased. The removals were possibly due to mineralization processes, biological decomposition and sorption in plants. These findings demonstrate that SSFCW are capable of simultaneously removing dissolved organic matter and organophosphate pesticides such as chlorpyrifos, which indicate that chlorpyrifos did not interfere with the removal of organic material.  相似文献   

9.
To investigate the water-air diffusive greenhouse gases (GHGs) fluxes from the Three Gorges Reservoir (TGR), a field experiment on carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from water surface was carried out from March 2011 to August 2012 by floating static chamber method. The results showed that CO2 was released to the atmosphere all the time and was less in autumn than in other seasons (P < 0.05). CH4 was also released to the atmosphere throughout the year but more in summer than other three seasons (P < 0.05). N2O flux was higher in autumn than other seasons (P < 0.05), and N2O was absorbed from the atmosphere mainly in summer. Moreover, correlation analysis illustrated that CO2 flux had significantly negative correlation with wind velocity (P < 0.05), whereas positive correlation with pH (P < 0.01) had been found. There was no significant correlation between CH4 (or N2O) flux and the measured environmental variables respectively (P > 0.05). Additionally, the annual fluxes of CO2, CH4 and N2O were 140.45 ± 12.57 mg CO2·m?2 h?1, 1.35 ± 0.14 mg CH4·m?2 h?1 and 34.34 ± 11.64 μg N2O·m?2 h?1, respectively. When compared to other reservoirs worldwide, the CO2 and N2O fluxes from TGR were higher than those from boreal and temperate reservoirs, but much lower than those from tropical reservoirs. CH4 flux was lower than those from boreal, temperate and most tropical reservoirs. In our study, the surface area of the TGR emitted 1.42 × 106 t CO2, 1.19 × 104 t CH4 and 589.93 t N2O in a year. The total GWP was 17.68 t CO2-eq ha?1 yr?1, of which CO2 flux was dominant (74.38%). Therefore, CO2 was the main contributor of GHGs fluxes in our study and thus future researches should focus on how to reduce CO2 fluxes from the surface of the TGR. TGR has a considerable contribution to regional GHG emissions.  相似文献   

10.
Glucose transport by Hymenolepis diminuta was inhibited when Cl? in the bathing medium was replaced with acetate (C2H3O2Post?), but was unaffected when Cl? was replaced with SCN?. The relative effectiveness of the anions to inhibit influx of 7.4 mM Cl? in the presence of 1 mM glucose was SCN? > Cl? > C2H3O2Post?. Glucose stimulated the influxes of 120 mM Cl? and SCN?, but had little effect on 120 mM C2H3O2Post? influx. While the diffusion rates of the anions were C2H3O2Post? > SCN? = Cl?, the preference of the glucose transport system for the anions was SCN? > Cl? > C2H3O2Post?. Efflux of Cl? was not affected by the rate of glucose influx. Finally, microelectrode recordings of worms anesthetized with 2 mM arecoline revealed a transmembrane potential (TMP) of ?45 ± 3.6 mV (inside negative). Three to four minutes after addition of glucose (5 mM) there was a progressive hyperpolarization of the TMP to ?58 mV. A revised model of the glucose transport system that is consistent with previous observations on this organism is proposed.  相似文献   

11.
Sr3(PO4)2:Dy3+,Li+ phosphors were prepared using a simple high temperature solid method for luminescence enhancement. The structures of the as‐prepared samples agreed well with the standard phase of Sr3(PO4)2, even when Dy3+ and Li+ were introduced. Under ultraviolet excitation at 350 nm, the Sr3(PO4)2:Dy3+ sample exhibited two emission peaks at 483 nm and 580 nm, which were due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. A white light was fabricated using these two emissions from the Sr3(PO4)2:Dy3+ phosphors. The luminescence properties of Sr3(PO4)2:Dy3+,Li+ phosphors, including emission intensity and decay time, were improved remarkably with the addition of Li+ as the charge compensator, which would promote their application in near‐ultraviolet excited white‐light‐emitting diodes.  相似文献   

12.
A novel fluorescent probe‐based naphthalene Schiff, 1‐(C2‐glucosyl‐ylimino‐methyl)‐naphthalene‐2‐ol (L) was synthesized by coupling d ‐glucosamine hydrochloride with 2‐hydroxy‐1‐naphthaldehyde. It exhibited excellent selectivity and highly sensitivity for Al3+ in ethanol with a strong fluorescence response, while other common metal ions such as Pb2+, Mg2+, Cu2+, Co2+, Ni2+, Cd2+, Fe2+, Mn2+, Hg2+, Li+, Na+, K+, Fe3+, Cr3+, Zn2+, Ag+, Ba2+ and Ca2+ did not cause the same fluorescence response. The probe selectively bound Al3+ with a binding constant (Ka) of 5.748 × 103 M?1 and a lowest detection limit (LOD) of 4.08 nM. Moreover, the study found that the fluorescence of the L ? Al3+ complex could be quenched after addition of F? in the same medium, while other anions, including Cl?, Br?, I?, NO2?, NO3?, ClO4?, CO32?, HCO3?, SO42?, HSO4?, CH3COO?, PO43?, HPO42?, S2? and S2O32? had nearly no influence on probe behaviour. Binding of the [L ? Al3+] complex to a F? anion was established by different fluorescence titration studies, with a detection limit of 3.2 nM in ethanol. The fluorescent probe was also successfully applied in the imaging detection of Al3+ and F? in living cells.  相似文献   

13.
Daily Patterns under the Life Cycle of a Maize Crop   总被引:3,自引:0,他引:3  
Together with photosynthesis, transpiration and respiration, the daily uptake of NO3?, NH4+, H2PO4?, K+, Ca2+, Mg2+, SO42?, the root respiration, root volume increase and root excretions have been studied by daily measurements during the growth period of whole maize plants (Zea mays L. cv. INRA F7 × F2) raised until complete maturity on nutrient solution. The uptake patterns show a maximum absorption of NO3?, K+ and Ca2+ during the vegetative growth phase. The absorption of these ions declines during maturation while that of H2PO4? reaches a maximum. Root respiration and particularly the uptake of NO3? and K+ are well correlated with the rate of root growth. Root excretion is more notable in young plants than in the old. It represents less than 0.2% of the net assimilation of adult plants.  相似文献   

14.
15.
Establishing optimized protocols for micropropagation of some economical plants, such as Prunus sp., is still one of the most important challenges for in vitro plant culture researchers. As an example, micropropagation of GF677 hybrid rootstocks (peach × almond) are extremely dependent on the medium ingredients and a large undesirable proportion of GF677 shoots need to be discarded as a result of hyperhydricity and chlorosis. In this study, an artificial intelligence technique—specifically neurofuzzy logic—has been employed, as a modeling tool, to increase knowledge on the effect of 8 ion macronutrients (NH4 +, NO3 ?, Ca2+, K+, Mg2+, SO4 2?, PO4 2? and Na+; as inputs) on three growth parameters (outputs): total number of shoots per explant, healthy number of shoots per explant, and their bud number. The model delivered new insights, by three sets of IF–THEN rules, pinpointing the key role of NO3 ? and their interactions (NO3 ? × Ca2+ and NO3 ? × Ca2+ × K+) on all growth parameters measured. All growth parameters showed a high correlation ratio between experimental and predicted values being 77.48, 91.78 and 90.78 for total shoots, healthy number and bud number, respectively. Regression coefficients higher than 77 % together with statistical significant ANOVA (p < 0.01) indicated good performance of neurofuzzy logic models. Moreover, The model also can be used for inferring the best combination of ion concentrations to obtain high quality GF677 micropropagated shoots. In conclusion, we assess the utility of neurofuzzy logic technology in modeling complex databases, identifying new complex interactions among macronutrients, and inferring new results and valuable knowledge, which can be applied to design new plant tissue culture media and improve plant micropropagation.  相似文献   

16.
Low dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment oxygen flux (SOF) at selected tidal creek sites monthly over a 1-year period. Ancillary physical, chemical and biological data were collected to identify factors related to oxygen loss. BOD5 rates ranged from 0.0 mg l?1 to 7.6 mg l?1 and were correlated positively with organic suspended solids, total suspended solids, chlorophyll a concentrations, temperature, and dissolved oxygen, and negatively with pH and nitrate + nitrite. SOF rates ranged from 0.0 to 9.3 g O2 m?2 d?1, and were positively correlated with temperature, chlorophyll a, and total suspended solids, but negatively with dissolved oxygen. Both forms of oxygen uptake were seasonally dependent, with BOD5 elevated in spring and summer and SOF elevated in summer and fall. Average oxygen loss to sediments was greater and more variable than oxygen loss in the water column. Oxygen deficits at three of five locations were significantly related to BOD5 and SOF, but not at two sites where ground water discharges were observed. Correlation and principal component analyses suggested that BOD5 and SOF responded to somewhat different suites of environmental variables. BOD5 was driven by a set of parameters linked to warm season storm water inputs that stimulated organic seston loads, especially chlorophyll a, while SOF behaved less strongly so. Runoff processes that increase loads of organic material and nutrients and ground water discharges low in dissolved oxygen contribute to occurrences of low dissolved oxygen in tidal creeks.  相似文献   

17.
Short and long-lived radium isotopes (223Ra, 224Ra, 226Ra, 228Ra) were used to quantify submarine groundwater discharge (SGD) and its associated input of inorganic nitrogen (NO3 ?), phosphorus (PO4 3?) and silica (SiO4 4?) into the karstic Alcalfar Cove, a coastal region of Minorca Island (Western Mediterranean Sea). Cove water, seawater and groundwater (wells and karstic springs) samples were collected in May 2005 and February 2006 for radium isotopes and in November 2007 for dissolved inorganic nutrients. Salinity profiles in cove waters suggested that SGD is derived from shallow brackish springs that formed a buoyant surface fresh layer of only 0.3 m depth. A binary mixing model that considers the distribution of radium activities was used to determine the cove water composition. Results showed that cove waters contained 20% brackish groundwater; of which 6% was recirculated seawater and 14% corresponded to freshwater discharge. Using a radium-derived residence time of 2.4 days, a total SGD flux of 150,000 m3 year?1 was calculated, consisting of 45,000 m3 year?1 recirculated seawater and 105,000 m3 year?1 fresh groundwater. Fresh SGD fluxes of NO3 ?, SiO4 4? and PO4 3? were estimated to be on the order of 18,000, 1,140 and 4 μmol m?2 day?1, respectively, and presumably sustain the high phytoplankton biomass observed in the cove during summer. The total amount of NO3 ? and SiO4 4? supplied by SGD was higher than the measured inventories in the cove, while the reverse was true for PO4 3?. These discrepancies are likely due to non-conservative biogeochemical processes that occur within the subterranean estuary and Alcalfar Cove waters.  相似文献   

18.
The present work was aimed at analysing the role of inoculated microalgae in nutrient dynamics, bioremediation and biomass production of sewage water. Preliminary microscopic analyses of sewage water revealed the presence of different algal groups, with predominance of Cyanophyta. Among the inoculated strains, Calothrix showed highest dry cell weight (916.67 mg L?1), chlorophyll and carotenoid content in tap water + sewage water (1:1) treatment. Significant removal of NO3-N ranging from 57–78% and PO4-P (44–91%) was recorded in microalgae inoculated tap water + sewage water. The total dissolved solids and electrical conductivity of tap water + sewage water after incubation with Calothrix sp. decreased by 28.5 and 28.0%, accompanied by an increase in dissolved oxygen from 4.4 to 6.4 mg L?1 on the 20th day. Our investigation revealed the robustness of Calothrix sp. in sequestering nutrients (N and P), improving water quality and proliferating in sewage water.  相似文献   

19.
The potential environmental toxicities of several metal oxide nanoparticles (NPs; CuO, TiO2, NiO, Fe2O3, ZnO, and Co3O4) were evaluated in the context of bioluminescence activity, seed germination, and bacterial gene mutation. The bioassays exhibited different sensitivities, i.e., each kind of NP exhibited a different level of toxicity in each of the bioassays. However, with a few exceptions, CuO and ZnO NPs had most toxic for germination of Lactuca seed (EC50 0.46 mg CuO/l) and bioluminescence (EC50 1.05 mg ZnO/l). Three NPs (Co3O4, TiO2, and Fe2O3) among all tested concentrations (max. 1,000 mg/l) showed no inhibitory effects on the tested organisms, except for Co3O4 NPs on bioluminescence activity (EC50 62.04 mg/l). The sensitivity of Lactuca seeds was greater than that of Raphanus seeds (EC50 0.46 mg CuO/l versus 26.84 mg CuO /l ). The ranking of metal toxicity levels on bioluminescence was in the order of ZnO?>?CuO?>?Co3O4?>?NiO?>?Fe2O3, TiO2, while CuO?>?ZnO?>?NiO?>?Co3O4, Fe2O3, TiO2 on germination. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under any tested condition. These findings demonstrate that several bioassays, as opposed to any single one, are needed for the accurate assessment of NP toxicity on ecosystems.  相似文献   

20.
Respiration and calcification rate were estimated to quantify the effect of Zhikong scallop Chlamys farreri on marine CO2 system in Sanggou Bay, China. The C. farreri population in Sanggou Bay sequestered 78.06?±?5.76 g C m?2 y?1 for shell formation, while the CO2 fluxes due to calcification and respiration were 53.95?±?3.98 and 71.69?±?6.51 g C m?2 y?1, respectively. In order to eliminate the additional CO2 released from calcification and respiration process of C. farreri, Gracilaria lemaneiformis were introduced into the integrated system and its role was validated by in situ mesocosm methods. Eight mesocosms (1,000 L) were deployed over 42-h period and consisted of four treatments: seaweed-only, scallop-only (SP), seaweed integrated with scallop (SS), and control (C). The aqueous CO2 concentration and partial pressure of CO2 in SP treatments were significantly higher than the other three treatments (p?<?0.01), while there were no difference between SS treatments and C treatments (p?>?0.05). Furthermore, compared with the SP treatments, the presence of the G. lemaneiformis can keep the seawater pH stable. These findings suggest that seaweed and shellfish integrated aquaculture practice cannot only reduce dissolved inorganic carbon but also can alleviate ocean acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号