首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
《Journal of molecular biology》2014,426(24):4030-4048
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.  相似文献   

5.
E7 oncoprotein is the major transforming activity in human papillomavirus and shares sequence and functional properties with adenovirus E1A and SV40 T-antigen, in particular by targeting the pRb tumor suppressor. HPV 16 E7 forms spherical oligomers that display chaperone activity in thermal denaturation and chemical refolding assays of two model polypeptide substrates, citrate synthase and luciferase, and it does so at substoichiometric concentrations. We show that the E7 chaperone can stably bind model polypeptides and hold them in a state with significant tertiary structure, but does not bind the fully native proteins. The E7 oligomers bind native in vitro translated pRb without the requirement of it being unfolded, since the N-terminal domain of E7 containing the LXCXE binding motif is exposed. The N-terminal domain of E7 can interfere with pRb binding but not with the chaperone activity, which requires the C-terminal domain, as in most reported E7 activities. The ability to bind up to approximately 72 molecules of pRb by the oligomeric E7 form could be important either for sequestering pRb from Rb-E2F complexes or for targeting it for proteasome degradation. Thus, both the dimeric and oligomeric chaperone forms of E7 can bind Rb and various potential targets. We do not know at present if the chaperone activity of E7 plays an essential role in the viral life cycle; however, a chaperone activity may explain the large number of cellular targets reported for this oncoprotein.  相似文献   

6.
It has previously been shown that the E7 protein from the cutaneous human papillomavirus type 1 (HPV1), which is associated with benign skin lesions, binds the product of the tumor suppressor gene retinoblastoma (pRb) with an efficiency similar to that of the E7 protein from the oncogenic HPV type 16. Despite this ability, HPV1 E7 does not display any activity in transforming primary cells. In addition, the two viral proteins differ in their mechanisms of targeting pRb. HPV16 E7 promotes pRb destabilization, while cells expressing HPV1 E7 do not show any decrease in pRb levels. In this study, we show that HPV1 E7, in contrast to HPV16 E7, has only a weak activity to neutralize the effect of cyclin-dependent kinase inhibitor p16INK4a. By generation of HPV1/16 E7 chimeric proteins, we have identified a central motif in the two E7 proteins, which determines their different abilities to overcome the p16INK4a-mediated cell cycle arrest. This motif is located downstream of the pRb-binding domain and comprises only three amino acids in HPV16 E7. Swapping this central motif in the two viral proteins causes an exchange of their activities involved in circumventing the inhibitory function of p16INK4a. Most importantly, our data show that the efficiency of the E7 proteins in neutralizing the inhibitory effect of p16INK4a correlates with their ability to promote pRb degradation.  相似文献   

7.
High-risk human papillomavirus type 16 (HPV-16) and HPV-18 are associated with the majority of human cervical carcinomas, and two viral genes, HPV E6 and E7, are commonly found to be expressed in these cancers. The presence of HPV-16 E7 is sufficient to induce epidermal hyperplasia and epithelial tumors in transgenic mice. In this study, we have performed experiments in transgenic mice to determine which domains of E7 contribute to these in vivo properties. The human keratin 14 promoter was used to direct expression of mutant E7 genes to stratified squamous epithelia in mice. The E7 mutants chosen had either an in-frame deletion in the conserved region 2 (CR2) domain, which is required for binding of the retinoblastoma tumor suppressor protein (pRb) and pRb-like proteins, or an in-frame deletion in the E7 CR1 domain. The CR1 domain contributes to cellular transformation at a level other than pRb binding. Four lines of animals transgenic for an HPV-16 E7 harboring a CR1 deletion and five lines harboring a CR2 deletion were generated and were observed for overt and histological phenotypes. A detailed time course analysis was performed to monitor acute effects of wild-type versus mutant E7 on the epidermis, a site of high-level expression. In the transgenic mice with the wild-type E7 gene, age-dependent expression of HPV-16 E7 correlated with the severity of epidermal hyperplasia. Similar age-dependent patterns of expression of the mutant E7 genes failed to result in any phenotypes. In addition, the transgenic mice with a mutant E7 gene did not develop tumors. These experiments indicate that binding and inactivation of pRb and pRb-like proteins through the CR2 domain of E7 are necessary for induction of epidermal hyperplasia and carcinogenesis in mouse skin and also suggest a role for the CR1 domain in the induction of these phenotypes through as-yet-uncharacterized mechanisms.  相似文献   

8.
9.
PKN binds and phosphorylates human papillomavirus E6 oncoprotein   总被引:6,自引:0,他引:6  
The high risk human papillomaviruses (HPVs) are associated with carcinomas of cervix and other genital tumors. Previous studies have identified two viral oncoproteins E6 and E7, which are expressed in the majority of HPV-associated carcinomas. The ability of high risk HPV E6 protein to immortalize human mammary epithelial cells has provided a single gene model to study the mechanisms of E6-induced oncogenic transformation. In recent years, it has become clear that in addition to E6-induced degradation of p53 tumor suppressor protein, other targets of E6 are required for mammary epithelial cells immortalization. Using the yeast two-hybrid system, we have identified a novel interaction of HPV16 E6 with protein kinase PKN, a fatty acid- and Rho small G protein-activated serine/threonine kinase with a catalytic domain highly homologous to protein kinase C. We demonstrate direct binding of high risk HPV E6 proteins to PKN in wheat-germ lysate in vitro and in 293T cells in vivo. Importantly, E6 proteins of high risk HPVs but not low risk HPVs were able to bind PKN. Furthermore, all the immortalization-competent and many immortalization-non-competent E6 mutants bind PKN. These data suggest that binding to PKN may be required but not sufficient for immortalizing normal mammary epithelial cells. Finally, we show that PKN phosphorylates E6, demonstrating for the first time that HPV E6 is a phosphoprotein. Our finding suggests a novel link between HPV E6 mediated oncogenesis and regulation of a well known phosphorylation cascade.  相似文献   

10.
R Davies  R Hicks  T Crook  J Morris    K Vousden 《Journal of virology》1993,67(5):2521-2528
The transforming function of human papillomavirus type 16 (HPV16) E7 has been shown to depend on activities additional to the ability to bind RB. In this paper we describe two further properties of E7 which may also contribute to transformation, an association with a histone H1 kinase at the G2/M phase of the cell cycle and an ability to bind the RB-related protein p107. The region of E7 identified previously as important for RB binding was found to be involved in the association with the kinase and complex formation with p107, although analysis of E7 point mutants within this region revealed a difference in the precise sequence requirement for RB and p107 binding. Association with the kinase activity correlated with the ability to bind RB, but the restriction of the kinase association to the G2/M phase of the cell cycle implies that this activity might not be directly mediated by RB binding. Since kinase-binding-deficient E7 mutants are also transformation defective, this may represent an independent function of E7 which plays a role in the G2/M phase of the cell cycle.  相似文献   

11.
12.
13.
Human papillomaviruses (HPVs), most commonly the HPV16 genotype, are the principle etiological determinant for cervical cancer, a common cancer worldwide resulting in over 200,000 deaths annually. The oncogenic properties of HPVs are attributable in part to the virally encoded protein E7, best known for its ability to bind to and induce the degradation of the retinoblastoma tumor suppressor, pRb, and related "pocket proteins" p107 and p130. Previously, we defined a role for E7 in the productive stage of the HPV16 life cycle, which takes place in stratified squamous epithelia. HPV perturbs the normal processes of cell growth and differentiation of stratified squamous epithelia. HPVs reprogram cells to support continued DNA synthesis and inhibit their differentiation in the suprabasal compartment of the epithelia, where cells normally have withdrawn from the cell cycle and initiated a well-defined pattern of terminal differentiation. These virus-induced perturbations, which contribute to the production of progeny HPVs, are dependent on E7. In this study, we define the mechanism of action by which E7 contributes to the productive stage of the HPV16 life cycle. We found that the ability of HPV16 to reprogram suprabasal cells to support DNA synthesis correlates with E7's ability to bind pocket proteins but not its ability to induce their degradation. In contrast, the ability of HPV16 to perturb differentiation correlated with both E7's binding to and degradation of pocket proteins. These data indicate that different hallmarks of the productive stage of the HPV16 life cycle rely upon different sets of requirements for E7.  相似文献   

14.
The human papillomavirus (HPV) E7 oncoprotein exists as a dimer and acts by binding to many cellular factors, preventing or retargeting their function and thereby making the infected cell conducive for viral replication. Dimerization of E7 is attributed primarily to the C-terminal domain, referred to as conserved region 3 (CR3). CR3 is highly structured and is necessary for E7's transformation ability. It is also required for binding of numerous E7 cellular targets. To systematically analyze the molecular mechanisms by which HPV16 E7 CR3 contributes to carcinogenesis, we created a comprehensive panel of mutations in residues predicted to be exposed on the surface of CR3. We analyzed our novel collection of mutants, as well as mutants targeting predicted hydrophobic core residues of the dimer, for the ability to dimerize. The same set of mutants was also assessed functionally for transformation capability in a baby rat kidney cell assay in conjugation with activated ras. We show that some mutants of HPV16 E7 CR3 failed to dimerize yet were still able to transform baby rat kidney cells. Our results identify several novel E7 mutants that abrogate transformation and also indicate that E7 does not need to exist as a stable dimer in order to transform cells.  相似文献   

15.
Expression of a high-risk human papillomavirus (HPV) E7 oncoprotein is sufficient to induce aberrant centrosome duplication in primary human cells. The resulting centrosome-associated mitotic abnormalities have been linked to the development of aneuploidy. HPV type 16 (HPV16) E7 induces supernumerary centrosomes through a mechanism that is at least in part independent of the inactivation of the retinoblastoma tumor suppressor pRb and is dependent on cyclin-dependent kinase 2 activity. Here, we show that HPV16 E7 can concentrate around mitotic spindle poles and that a small pool of HPV16 E7 is associated with centrosome fractions isolated by sucrose density gradient centrifugation. The targeting of HPV16 E7 to the centrosome, however, was not sufficient for centrosome overduplication. Nonetheless, we found that HPV16 E7 can associate with the centrosomal regulator γ-tubulin and that the recruitment of γ-tubulin to the centrosome is altered in HPV16 E7-expressing cells. Since the association of HPV16 E7 with γ-tubulin is independent of pRb, p107, and p130, our results suggest that the association with γ-tubulin contributes to the pRb/p107/p130-independent ability of HPV16 E7 to subvert centrosome homeostasis.  相似文献   

16.
17.
18.
Human papillomavirus 16 E7 (HPV16 E7) and adenovirus 5 E1A (Ad5 E1A) are encoded by highly divergent viruses yet are functionally similar in their ability to bind the retinoblastoma (pRB) tumor suppressor protein, causing the aberrant displacement of E2F trancription factors. The amino acid residues of HPV16 E7 that are necessary for stability, for inhibition of pRB function, and for cell transformation are also necessary for E7 oligomerization. However, neither the specific oligomerization state of HPV16 E7 nor of Ad5 E1A as a function of pRB-binding has been characterized. To gain insight into HPV16 E7 and Ad5 E1A oligomerization properties, sedimentation equilibrium experiments were performed with recombinant HPV16 E7 and Ad5 E1A proteins. These studies reveal that, despite the overall functional similarities between these proteins, monomers, dimers, and tetramers of HPV16 E7 were detected while only reversible monomer-dimer association was identified for Ad5 E1A. The apparent K(d(monomer)-(dimer)) of HPV16 E7 is approximately 100-fold lower than that of a comparable region of Ad5 E1A, and it is concluded that under physiological protein concentrations HPV16 E7 exists primarily as a dimer. Sedimentation equilibrium experiments of pRB/Ad5 E1A and of pRB/HPV16 E7 complexes demonstrate that the tight association of pRB with the viral oncoproteins does not disturb their inherent oligomerization properties. Taken together, this study demonstrates significant differences between the Ad5 E1A and HPV16 E7 oligomerization states that are potentially related to their distinct structures and specific mechanisms of pRB-inactivation.  相似文献   

19.
20.
The high-risk HPV E6 and E7 proteins cooperate to immortalize primary human cervical cells and the E7 protein can independently transform fibroblasts in vitro, primarily due to its ability to associate with and degrade the retinoblastoma tumor suppressor protein, pRb. The binding of E7 to pRb is mediated by a conserved Leu-X-Cys-X-Glu (LXCXE) motif in the conserved region 2 (CR2) of E7 and this domain is both necessary and sufficient for E7/pRb association. In the current study, we report that the E7 protein of the malignancy-associated canine papillomavirus type 2 encodes an E7 protein that has serine substituted for cysteine in the LXCXE motif. In HPV, this substitution in E7 abrogates pRb binding and degradation. However, despite variation at this critical site, the canine papillomavirus E7 protein still bound and degraded pRb. Even complete deletion of the LXSXE domain of canine E7 failed to interfere with binding to pRb in vitro and in vivo. Rather, the dominant binding site for pRb mapped to the C-terminal domain of canine E7. Finally, while the CR1 and CR2 domains of HPV E7 are sufficient for degradation of pRb, the C-terminal region of canine E7 was also required for pRb degradation. Screening of HPV genome sequences revealed that the LXSXE motif of the canine E7 protein was also present in the gamma HPVs and we demonstrate that the gamma HPV-4 E7 protein also binds pRb in a similar way. It appears, therefore, that the type 2 canine PV and gamma-type HPVs not only share similar properties with respect to tissue specificity and association with immunosuppression, but also the mechanism by which their E7 proteins interact with pRb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号