首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies were generated by immunizing mice with chick brain synaptic membranes and screening for immunoprecipitation of solubilized conotoxin GVIA receptors (N-type calcium channels). Antibodies against two synaptic proteins (p35--syntaxin 1 and p58--synaptotagmin) were produced and used to purify and characterize a ternary complex containing N-type channels associated with these two proteins. These results provided the first evidence for a specific interaction between presynaptic calcium channels and SNARE proteins involved in synaptic vesicle docking and calcium-dependent exocytosis. Immunoprecipitation experiments supported the conclusion that syntaxin 1/SNAP-25/VAMP/synaptotagmin I or II complexes associate with N-type, P/Q-type, but not L-type calcium channels from rat brain nerve terminals. Immunofluorescent confocal microscopy at the frog neuromuscular junction was consistent with the co-localization of syntaxin 1, SNAP-25, and calcium channels, all of which are predominantly expressed at active zones of the presynaptic plasma membrane facing post-synaptic folds rich in acetylcholine receptors. The interaction of proteins implicated in calcium-dependent exocytosis with presynaptic calcium channels may locate the sensor(s) that trigger vesicle fusion within a microdomain of calcium entry.  相似文献   

2.
Neurotransmitter gamma-aminobutyric acid (GABA) release to the synaptic clefts is mediated by the formation of a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which includes two target SNAREs syntaxin 1A and SNAP-25 and one vesicle SNARE VAMP-2. The target SNAREs syntaxin 1A and SNAP-25 form a heterodimer, the putative intermediate of the SNARE complex. Neurotransmitter GABA clearance from synaptic clefts is carried out by the reuptake function of its transporters to terminate the postsynaptic signaling. Syntaxin 1A directly binds to the neuronal GABA transporter GAT-1 and inhibits its reuptake function. However, whether other SNARE proteins or SNARE complex regulates GABA reuptake remains unknown. Here we demonstrate that SNAP-25 efficiently inhibits GAT-1 reuptake function in the presence of syntaxin 1A. This inhibition depends on SNAP-25/syntaxin 1A complex formation. The H3 domain of syntaxin 1A is identified as the binding sites for both SNAP-25 and GAT-1. SNAP-25 binding to syntaxin 1A greatly potentiates the physical interaction of syntaxin 1A with GAT-1 and significantly enhances the syntaxin 1A-mediated inhibition of GAT-1 reuptake function. Furthermore, nitric oxide, which promotes SNAP-25 binding to syntaxin 1A to form the SNARE complex, also potentiates the interaction of syntaxin 1A with GAT-1 and suppresses GABA reuptake by GAT-1. Thus our findings delineate a further molecular mechanism for the regulation of GABA reuptake by a target SNARE complex and suggest a direct coordination between GABA release and reuptake.  相似文献   

3.
Neurotransmitter release from synaptic vesicles is triggered by voltage-gated calcium influx through P/Q-type or N-type calcium channels. Purification of N-type channels from rat brain synaptosomes initially suggested molecular interactions between calcium channels and two key proteins implicated in exocytosis: synaptotagmin I and syntaxin 1. Co-immunoprecipitation experiments were consistent with the hypothesis that both N- and P/Q-type calcium channels, but not L-type channels, are associated with the 7S complex containing syntaxin 1, SNAP-25, VAMP and synaptotagmin I or II. Immunofluorescence confocal microscopy at the frog neuromuscular junction confirmed that calcium channels, syntaxin 1 and SNAP-25 are co-localized at active zones of the presynaptic plasma membrane where transmitter release occurs. Experiments with recombinant proteins were performed to map synaptic protein interaction sites on the alpha 1A subunit, which forms the pore of the P/Q-type calcium channel. In vitro-translated 35S-synaptotagmin I bound to a site located on the cytoplasmic loop linking homologous domains II and III of the alpha 1A subunit. This direct link would target synaptotagmin, a putative calcium sensor for exocytosis, to a microdomain of calcium influx close to the channel mouth. Cysteine string proteins (CSPs) contain a J-domain characteristic of molecular chaperones that cooperate with Hsp70. They are located on synaptic vesicles and thought to be involved in modulating the activity of presynaptic calcium channels. CSPs were found to bind to the same domain of the calcium channel as synaptotagmin, and also to associate with VAMP. CSPs may act as molecular chaperones in association with Hsp70 to direct assembly or dissociation of multiprotein complexes at the calcium channel.  相似文献   

4.
Previously we suggested that interaction between voltage-gated K+ channels and protein components of the exocytotic machinery regulated transmitter release. This study concerns the interaction between the Kv2.1 channel, the prevalent delayed rectifier K+ channel in neuroendocrine and endocrine cells, and syntaxin 1A and SNAP-25. We recently showed in islet beta-cells that the Kv2.1 K+ current is modulated by syntaxin 1A and SNAP-25. Here we demonstrate, using co-immunoprecipitation and immunocytochemistry analyses, the existence of a physical interaction in neuroendocrine cells between Kv2.1 and syntaxin 1A. Furthermore, using concomitant co-immunoprecipitation from plasma membranes and two-electrode voltage clamp analyses in Xenopus oocytes combined with in vitro binding analysis, we characterized the effects of these interactions on the Kv2.1 channel gating pertaining to the assembly/disassembly of the syntaxin 1A/SNAP-25 (target (t)-SNARE) complex. Syntaxin 1A alone binds strongly to Kv2.1 and shifts both activation and inactivation to hyperpolarized potentials. SNAP-25 alone binds weakly to Kv2.1 and probably has no effect by itself. Expression of SNAP-25 together with syntaxin 1A results in the formation of t-SNARE complexes, with consequent elimination of the effects of syntaxin 1A alone on both activation and inactivation. Moreover, inactivation is shifted to the opposite direction, toward depolarized potentials, and its extent and rate are attenuated. Based on these results we suggest that exocytosis in neuroendocrine cells is tuned by the dynamic coupling of the Kv2.1 channel gating to the assembly status of the t-SNARE complex.  相似文献   

5.
Regulated exocytosis involves calcium-dependent fusion of secretory vesicles with the plasma membrane with three SNARE proteins playing a central role: the vesicular synaptobrevin and the plasma membrane syntaxin1 and SNAP-25. Cultured bovine chromaffin cells possess defined plasma membrane microdomains that are specifically enriched in both syntaxin1 and SNAP-25. We now show that in both isolated cells and adrenal medulla slices these target SNARE (t-SNARE) patches quantitatively coincide with single vesicle secretory spots as detected by exposure of the intravesicular dopamine beta-hydroxylase onto the plasmalemma. During exocytosis, neither area nor density of the syntaxin1/SNAP-25 microdomains changes on the plasma membrane of both preparations confirming that preexisting clusters act as the sites for vesicle fusion. Our analysis reveals a high level of colocalization of L, N and P/Q type calcium channel clusters with SNAREs in adrenal slices; this close association is altered in individual cultured cells. Therefore, microdomains carrying syntaxin1/SNAP-25 and different types of calcium channels act as the sites for physiological granule fusion in "in situ" chromaffin cells. In the case of isolated cells, it is the t-SNAREs microdomains rather than calcium channels that define the sites of exocytosis.  相似文献   

6.
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.  相似文献   

7.
Syntaxin 1 and synaptosome-associated protein of 25 kD (SNAP-25) are neuronal plasmalemma proteins that appear to be essential for exocytosis of synaptic vesicles (SVs). Both proteins form a complex with synaptobrevin, an intrinsic membrane protein of SVs. This binding is thought to be responsible for vesicle docking and apparently precedes membrane fusion. According to the current concept, syntaxin 1 and SNAP-25 are members of larger protein families, collectively designated as target-SNAP receptors (t-SNAREs), whose specific localization to subcellular membranes define where transport vesicles bind and fuse. Here we demonstrate that major pools of syntaxin 1 and SNAP-25 recycle with SVs. Both proteins cofractionate with SVs and clathrin-coated vesicles upon subcellular fractionation. Using recombinant proteins as standards for quantitation, we found that syntaxin 1 and SNAP-25 each comprise approximately 3% of the total protein in highly purified SVs. Thus, both proteins are significant components of SVs although less abundant than synaptobrevin (8.7% of the total protein). Immunoisolation of vesicles using synaptophysin and syntaxin specific antibodies revealed that most SVs contain syntaxin 1. The widespread distribution of both syntaxin 1 and SNAP-25 on SVs was further confirmed by immunogold electron microscopy. Botulinum neurotoxin C1, a toxin that blocks exocytosis by proteolyzing syntaxin 1, preferentially cleaves vesicular syntaxin 1. We conclude that t- SNAREs participate in SV recycling in what may be functionally distinct forms.  相似文献   

8.
Synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: syntaxin and SNAP-25 on the plasma membrane (t-SNAREs) and synaptobrevin/VAMP on the synaptic vesicles (v-SNARE). Vesicular synaptotagmin 1 is essential for fast synchronous SNARE-mediated exocytosis and interacts with the SNAREs in brain material. To uncover the step at which synaptotagmin becomes linked to the three SNAREs, we purified all four proteins from brain membranes and analyzed their interactions. Our study reveals that, in the absence of calcium, native synaptotagmin 1 binds the t-SNARE heterodimer, formed from syntaxin and SNAP-25. This interaction is both stoichiometric and of high affinity. Synaptotagmin contains two divergent but conserved C2 domains that can act independently in calcium-triggered phospholipid binding. We now show that both C2 domains are strictly required for the calcium-independent interaction with the t-SNARE heterodimer, indicating that the double C2 domain structure of synaptotagmin may have evolved to acquire a function beyond calcium/phospholipid binding.  相似文献   

9.
Sodium-selective amiloride-sensitive epithelial channel (ENaC) located in the apical membrane is involved in the reabsorption of sodium in tight epithelia. The soluble N-ethylmaleimide-sensitive attachment receptors (SNAREs) mediate vesicle trafficking in a variety of cell systems. Syntaxin (a t-SNARE) has been shown to interact with and functionally regulate a number of ion channels including ENaC. In this study, we investigated the role of SNAP-23, another SNARE protein, on ENaC activity in the HT-29 colonic epithelial cell system and Xenopus oocytes. Recording of amiloride-sensitive currents in both systems suggest that SNAP-23 modulates channel function, though a much higher concentration is required to inhibit ENaC in Xenopus oocytes. The introduction of Botulinum toxin A (a neurotoxin which cleaves SNAP-23), but not Botulinum toxin B or heat-inactivated Botulinum toxin A, reversed the inhibitory effect of SNAP-23 on amiloride-sensitive currents. However, syntaxin 1A and SNAP-23 combined portray a complex scenario that suggests that this channel interacts within a quaternary complex. Synaptotagmin expression neither interacts with, nor showed any effect on amiloride-sensitive currents when co-expressed with ENaC. Pull down assays suggest mild interaction between ENaC and SNAP-23, which gets stronger in the presence of syntaxin 1A. Data further suggest that SNAP-23 possibly interacts with the N-terminal alphaENaC. These functional and biochemical approaches provide evidence for a complex relationship between ENaC and the exocytotic machinery. Our data suggest that SNARE protein interplay defines the fine regulation of sodium channel function.  相似文献   

10.
A single molecule fluorescence assay is presented for studying the mechanism of soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs)-mediated liposome fusion to supported lipid bilayers. The three neuronal SNAREs syntaxin-1A, synaptobrevin-II (VAMP), and SNAP-25A were expressed separately, and various dye-labeled combinations of the SNAREs were tested for their ability to dock liposomes and induce fusion. Syntaxin and synaptobrevin in opposing membranes were both necessary and sufficient to dock liposomes to supported bilayers and to induce thermally activated fusion. As little as one SNARE interaction was sufficient for liposome docking. Fusion of docked liposomes with the supported bilayer was monitored by the dequenching of soluble fluorophores entrapped within the liposomes. Fusion was stimulated by illumination with laser light, and the fusion probability was enhanced by raising the ambient temperature from 22 to 37 degrees C, suggesting a thermally activated process. Surprisingly, SNAP-25 had little effect on docking efficiency or the probability of thermally induced fusion. Interprotein fluorescence resonance energy transfer experiments suggest the presence of other conformational states of the syntaxin*synaptobrevin interaction in addition to those observed in the crystal structure of the SNARE complex. Furthermore, although SNARE complexes involved in liposome docking preferentially assemble into a parallel configuration, both parallel and antiparallel configurations were observed.  相似文献   

11.
The direct modulation of N-type calcium channels by G protein betagamma subunits is considered a key factor in the regulation of neurotransmission. Some of the molecular determinants that govern the binding interaction of N-type channels and Gbetagamma have recently been identified (see, i.e., Zamponi, G. W., Bourinet, E., Nelson, D., Nargeot, J., and Snutch, T. P. (1997) Nature 385, 442-446); however, little is known about cellular mechanisms that modulate this interaction. Here we report that a protein of the presynaptic vesicle release complex, syntaxin 1A, mediates a crucial role in the tonic inhibition of N-type channels by Gbetagamma. When syntaxin 1A was coexpressed with (N-type) alpha(1B) + alpha(2)-delta + beta(1b) channels in tsA-201 cells, the channels underwent a 18 mV negative shift in half-inactivation potential, as well as a pronounced tonic G protein inhibition as assessed by its reversal by strong membrane depolarizations. This tonic inhibition was dramatically attenuated following incubation with botulinum toxin C, indicating that syntaxin 1A expression was indeed responsible for the enhanced G protein modulation. However, when G protein betagamma subunits were concomitantly coexpressed, the toxin became ineffective in removing G protein inhibition, suggesting that syntaxin 1A optimizes, rather than being required for G protein modulation of N-type channels. We also demonstrate that Gbetagamma physically binds to syntaxin 1A, and that syntaxin 1A can simultaneously interact with Gbetagamma and the synprint motif of the N-type channel II-III linker. Taken together, our experiments suggest a mechanism by which syntaxin 1A mediates a colocalization of G protein betagamma subunits and N-type calcium channels, thus resulting in more effective G protein coupling to, and regulation of, the channel. Thus, the interactions between syntaxin, G proteins, and N-type calcium channels are part of the structural specialization of the presynaptic terminal.  相似文献   

12.
N- and P/Q-type calcium channels are localized in high density in presynaptic nerve terminals and are crucial elements in neuronal excitation–secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. As outlined in the preceding article, these calcium channels can be purified from brain as a complex with SNARE proteins which are involved in exocytosis. In addition, N-type and P/Q-type calcium channels are co-localized with syntaxin in high-density clusters in nerve terminals. Here we review the role of the synaptic protein interaction (synprint) sites in the intracellular loop II–III (LII–III) of both 1B and 1A subunits of N-type and P/Q-type calcium channels, which bind to syntaxin, SNAP-25, and synaptotagmin. Calcium has a biphasic effect on the interactions of N-type calcium channels with SNARE complexes, stimulating optimal binding in the range of 10–20 M. PKC or CaM KII phosphorylation of the N-type synprint peptide inhibits interactions with native brain SNARE complexes containing syntaxin and SNAP-25. Introduction of the synprint peptides into presynaptic superior cervical ganglion neurons reversibly inhibits EPSPs from synchronous transmitter release by 42%. At physiological Ca2+ concentrations, synprint peptides cause an approximate 25% reduction in transmitter release of injected frog neuromuscular junction in cultures, consistent with detachment of 70% of the docked vesicles from calcium channels based on a theoretical model. Together, these studies suggest that presynaptic calcium channels not only provide the calcium signal required by the exocytotic machinery, but also contain structural elements that are integral to vesicle docking, priming, and fusion processes.  相似文献   

13.
nSec1 binds a closed conformation of syntaxin1A   总被引:15,自引:0,他引:15  
The Sec1 family of proteins is proposed to function in vesicle trafficking by forming complexes with target membrane SNAREs (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein [SNAP] receptors) of the syntaxin family. Here, we demonstrate, by using in vitro binding assays, nondenaturing gel electrophoresis, and specific neurotoxin treatment, that the interaction of syntaxin1A with the core SNARE components, SNAP-25 (synaptosome-associated protein of 25 kD) and VAMP2 (vesicle-associated membrane protein 2), precludes the interaction with nSec1 (also called Munc18 and rbSec1). Inversely, association of nSec1 and syntaxin1A prevents assembly of the ternary SNARE complex. Furthermore, using chemical cross-linking of rat brain membranes, we identified nSec1 complexes containing syntaxin1A, but not SNAP-25 or VAMP2. These results support the hypothesis that Sec1 proteins function as syntaxin chaperons during vesicle docking, priming, and membrane fusion.  相似文献   

14.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

15.
Molecular determinants of syntaxin 1 modulation of N-type calcium channels   总被引:6,自引:0,他引:6  
We have previously reported that syntaxin 1A, a component of the presynaptic SNARE complex, directly modulates N-type calcium channel gating in addition to promoting tonic G-protein inhibition of the channels, whereas syntaxin 1B affects channel gating but does not support G-protein modulation (Jarvis, S. E., and Zamponi, G. W. (2001) J. Neurosci. 21, 2939-2948). Here, we have investigated the molecular determinants that govern the action of syntaxin 1 isoforms on N-type calcium channel function. In vitro evidence shows that both syntaxin 1 isoforms physically interact with the G-protein beta subunit and the synaptic protein interaction (synprint) site contained within the N-type calcium channel domain II-III linker region. Moreover, in vitro evidence suggests that distinct domains of syntaxin participate in each interaction, with the COOH-terminal SNARE domain (residues 183-230) binding to Gbeta and the N-terminal (residues 1-69) binding to the synprint motif of the channel. Electrophysiological analysis of chimeric syntaxin 1A/1B constructs reveals that the variable NH(2)-terminal domains of syntaxin 1 are responsible for the differential effects of syntaxin 1A and 1B on N-type calcium channel function. Because syntaxin 1 exists in both "open" and "closed" conformations during exocytosis, we produced a constitutively open form of syntaxin 1A and found that it still promoted G-protein inhibition of the channels, but it did not affect N-type channel availability. This state dependence of the ability of syntaxin 1 to mediate N-type calcium channel availability suggests that syntaxin 1 dynamically regulates N-type channel function during various steps of exocytosis. Finally, syntaxin 1A appeared to compete with Ggamma for the Gbeta subunit both in vitro and under physiological conditions, suggesting that syntaxin 1A may contain a G-protein gamma subunit-like domain.  相似文献   

16.
Regulation of growth cone extension by SNARE proteins.   总被引:5,自引:0,他引:5  
Recent studies have suggested that the soluble N-ethylmaleimide-sensitive factor attached protein (SNAP) receptor (SNARE)-mediated membrane fusion system is involved in vesicle fusion with the surface plasma membrane, which leads to neurite elongation. There have been several reports analyzing the effects of neurite outgrowth by inhibition of SNAREs. We studied this mechanism by overexpressing GFP-fusion SNAREs including VAMP-2, SNAP-25A, and syntaxin1A in PC12 cells to investigate the role of SNAREs in neurite outgrowth. When overexpressed in PC12 cells, VAMP-2 promoted neurite elongation, whereas SNAP-25A stimulated neurite sprouting. On the other hand, overexpression of syntaxin1A neither promoted nor inhibited neurite outgrowth. Thus, VAMP-2 and SNAP-25A play different roles in neurite elongation and sprouting.  相似文献   

17.
In nerve terminals, exocytosis is mediated by SNARE proteins and regulated by Ca(2+) and synaptotagmin-1 (syt). Ca(2+) promotes the interaction of syt with anionic phospholipids and the target membrane SNAREs (t-SNAREs) SNAP-25 and syntaxin. Here, we have used a defined reconstituted fusion assay to determine directly whether syt-t-SNARE interactions couple Ca(2+) to membrane fusion by comparing the effects of Ca(2+)-syt on neuronal (SNAP-25, syntaxin and synaptobrevin) and yeast (Sso1p, Sec9c and Snc2p) SNAREs. Ca(2+)-syt aggregated neuronal and yeast SNARE liposomes to similar extents via interactions with anionic phospholipids. However, Ca(2+)-syt was able to bind and stimulate fusion mediated by only neuronal SNAREs and had no effect on yeast SNAREs. Thus, Ca(2+)-syt regulates fusion through direct interactions with t-SNAREs and not solely through aggregation of vesicles. Ca(2+)-syt drove assembly of SNAP-25 onto membrane-embedded syntaxin, providing direct evidence that Ca(2+)-syt alters t-SNARE structure.  相似文献   

18.
The SNARE proteins syntaxin, SNAP-25, and synaptobrevin play a central role during Ca(2+)-dependent exocytosis at the nerve terminal. Whereas syntaxin and SNAP-25 are located in the plasma membrane, synaptobrevin resides in the membrane of synaptic vesicles. It is thought that gradual assembly of these proteins into a membrane-bridging ternary SNARE complex ultimately leads to membrane fusion. According to this model, syntaxin and SNAP-25 constitute an acceptor complex for synaptobrevin. In vitro, however, syntaxin and SNAP-25 form a stable complex that contains two syntaxin molecules, one of which is occupying and possibly obstructing the binding site of synaptobrevin. To elucidate the assembly pathway of the synaptic SNAREs, we have now applied a combination of fluorescence and CD spectroscopy. We found that SNARE assembly begins with the slow and rate-limiting interaction of syntaxin and SNAP-25. Their interaction was prevented by N-terminal but not by C-terminal truncations, suggesting that for productive assembly all three participating helices must come together simultaneously. This suggests a complicated nucleation process that might be the reason for the observed slow assembly rate. N-terminal truncations of SNAP-25 and syntaxin also prevented the formation of the ternary complex, whereas neither N- nor C-terminal shortened synaptobrevin helices lost their ability to interact. This suggests that binding of synaptobrevin occurs after the establishment of the syntaxin-SNAP-25 interaction. Moreover, binding of synaptobrevin was inhibited by an excess of syntaxin, suggesting that a 1:1 interaction of syntaxin and SNAP-25 serves as the on-pathway SNARE assembly intermediate.  相似文献   

19.
Pombo I  Rivera J  Blank U 《FEBS letters》2003,550(1-3):144-148
Exocytosis of mast cell granules requires a vesicular- and plasma membrane-associated fusion machinery. We examined the distribution of SNARE membrane fusion and Munc18 accessory proteins in lipid rafts of RBL mast cells. SNAREs were found either excluded (syntaxin2), equally distributed between raft and non-raft fractions (syntaxin4, VAMP-8, VAMP-2), or selectively enriched in rafts (syntaxin3, SNAP-23). Syntaxin4-binding Munc18-3 was absent, whereas small amounts of the syntaxin3-interacting partner Munc18-2 consistently distributed into rafts. Cognate SNARE complexes of syntaxin3 with SNAP-23 and VAMP-8 were enriched in rafts, whereas Munc18-2/syntaxin3 complexes were excluded. This demonstrates a spatial separation between these two types of complexes and suggests that Munc18-2 acts in a step different from SNARE complex formation and fusion.  相似文献   

20.
Syntaxin 1A binds to and inhibits epithelial cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and synaptic Ca(2+) channels in addition to participating in SNARE complex assembly and membrane fusion. We exploited the isoform-specific nature of the interaction between syntaxin 1A and CFTR to identify residues in the H3 domain of this SNARE (SNARE motif) that influence CFTR binding and regulation. Mutating isoform-specific residues that map to the surface of syntaxin 1A in the SNARE complex led to the identification of two sets of hydrophilic residues that are important for binding to and regulating CFTR channels or for binding to the syntaxin regulatory protein Munc-18a. None of these mutations affected syntaxin 1A binding to other SNAREs or the assembly and stability of SNARE complexes in vitro. Conversely, the syntaxin 1A-CFTR interaction was unaffected by mutating hydrophobic residues in the H3 domain that influence SNARE complex stability and Ca(2+) channel regulation. Thus, CFTR channel regulation by syntaxin 1A involves hydrophilic interactions that are mechanistically distinct from the hydrophobic interactions that mediate SNARE complex formation and Ca(2+) channel regulation by this t-SNARE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号