首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignocellulosic biomass from agricultural crop residues and forest waste represents an abundant renewable resource for bioenergy and future biofuel. The current bottleneck of lignocellulosic biofuel production is the hydrolysis of biomass to sugar. To understand the enzymatic hydrolysis of complex biomasses, in this report, lignocellulolytic enzymes secretion by Phanerochaete chrysosporium cultivated in different natural lignocellulosic biomass such as corn stover, hay, sawdust, sugarcane baggase, wheat bran and wood chips were quantitatively analyzed with the iTRAQ technique using LC-MS/MS. A diverse groups of enzymes, including cellulases, glycoside hydrolases, hemicellulases, lignin degrading enzymes, peroxidases, esterases, lipases, chitinases, peptidases, protein translocating transporter and hypothetical proteins were quantified, of which several were novel lignocellulosic biomass hydrolyzing enzymes. The quantitative expression and regulation of lignocellulolytic enzymes by P. chrysosporium were dependent on the nature and complexity of lignocellulosic biomass as well as physical size of the biomass. The iTRAQ data revealed oxidative and hydrolytic lignin degrading mechanism of P. chrysosporium. Numerous proteins presumed to be involved in natural lignocellulosic biomass transformation and degradation were expressed and produced in variable quantities in response to different agricultural and forest wastes.  相似文献   

2.
Lignocellulosic residues: Biodegradation and bioconversion by fungi   总被引:5,自引:0,他引:5  
The ability of fungi to degrade lignocellulosic materials is due to their highly efficient enzymatic system. Fungi have two types of extracellular enzymatic systems; the hydrolytic system, which produces hydrolases that are responsible for polysaccharide degradation and a unique oxidative and extracellular ligninolytic system, which degrades lignin and opens phenyl rings. Lignocellulosic residues from wood, grass, agricultural, forestry wastes and municipal solid wastes are particularly abundant in nature and have a potential for bioconversion. Accumulation of lignocellulosic materials in large quantities in places where agricultural residues present a disposal problem results not only in deterioration of the environment but also in loss of potentially valuable material that can be used in paper manufacture, biomass fuel production, composting, human and animal feed among others. Several novel markets for lignocellulosic residues have been identified recently. The use of fungi in low cost bioremediation projects might be attractive given their lignocellulose hydrolysis enzyme machinery.  相似文献   

3.
木聚糖是植物细胞壁中含量最丰富的非纤维素多糖,大约占陆地生物质资源的20%-35%。不同物种来源的木聚糖结构因取代方式不同而具有广泛的异质性,这对生物质资源向生物燃料和其他高值产品高效转化提出了重大挑战。因此,需要开发由不同类型酶组成的最佳混合物以有效糖化木聚糖类底物。但是针对特定类型的底物设计高效降解酶系十分困难,应考虑底物的类型、底物的组成和物理性质、多糖的聚合度以及不同降解酶组分的生化性质等。本文从不同植物木聚糖的结构异质性与合成复杂性方面展示了其抗降解屏障,同时介绍了木聚糖主链降解酶系及侧链降解酶系的多样性以及协同降解作用,综述了复杂生境中微生物种群产生的混合酶系、降解菌株产生的高效酶系,以及基于特定木聚糖底物改造并定制简化高效的酶系统。随着不同种类木聚糖精细结构和木聚糖降解酶底物特异性的深入研究,针对特定底物类型进行绿色高效木聚糖酶系定制,加速木聚糖类底物的降解,从而实现木质纤维素资源的绿色高值化利用。  相似文献   

4.
Sugarcane (Saccharum sp. hybrids) is one of the most efficient and sustainable feedstocks for commercial production of fuel ethanol. Recent efforts focus on the integration of first and second generation bioethanol conversion technologies for sugarcane to increase biofuel yields. This integrated process will utilize both the cell wall bound sugars of the abundant lignocellulosic sugarcane residues in addition to the sucrose from stem internodes. Enzymatic hydrolysis of lignocellulosic biomass into its component sugars requires significant amounts of cell wall degrading enzymes. In planta production of xylanases has the potential to reduce costs associated with enzymatic hydrolysis but has been reported to compromise plant growth and development. To address this problem, we expressed a hyperthermostable GH10 xylanase, xyl10B in transgenic sugarcane which displays optimal catalytic activity at 105?°C and only residual catalytic activity at temperatures below 70?°C. Transgene integration and expression in sugarcane were confirmed by Southern blot, RT-PCR, ELISA and western blot following biolistic co-transfer of minimal expression cassettes of xyl10B and the selectable neomycin phosphotransferase II. Xylanase activity was detected in 17 transgenic lines with a fluorogenic xylanase activity assay. Up to 1.2% of the total soluble protein fraction of vegetative progenies with integration of chloroplast targeted expression represented the recombinant Xyl10B protein. Xyl10B activity was stable in vegetative progenies. Tissues retained 75% of the xylanase activity after drying of leaves at 35?°C and a 2 month storage period. Transgenic sugarcane plants producing Xyl10B did not differ from non-transgenic sugarcane in growth and development under greenhouse conditions. Sugarcane xylan and bagasse were used as substrate for enzymatic hydrolysis with the in planta produced Xyl10B. TLC and HPLC analysis of hydrolysis products confirmed the superior catalytic activity and stability of the in planta produced Xyl10B with xylobiose as a prominent degradation product. These findings will contribute to advancing consolidated processing of lignocellulosic sugarcane biomass.  相似文献   

5.
The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.  相似文献   

6.
Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization.  相似文献   

7.
Agrawal P  Verma D  Daniell H 《PloS one》2011,6(12):e29302
Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight). Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C) and wider pH optima (pH 3.0 to 7.0) than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the cocktail without mannanase. Our results demonstrate that chloroplast-derived mannanase is an important component of enzymatic cocktail for woody biomass hydrolysis and should provide a cost-effective solution for its diverse applications in the biofuel, paper, oil, pharmaceutical, coffee and detergent industries.  相似文献   

8.
Significant amounts of cell wall degrading (CWD) enzymes are required to degrade lignocellulosic biomass into its component sugars. One strategy for reducing exogenous enzyme production requirements is to produce the CWD enzymes in planta. For this work, various CWD enzymes were expressed in maize (Zea mays). Following growth and dry down of the plants, harvested maize stover was tested to determine the impact of the expressed enzymes on the production of glucose and xylose using different exogenous enzyme loadings. In this study, a consolidated pretreatment and hydrolysis process consisting of a moderate chemical pretreatment at temperatures below 75°C followed by enzymatic hydrolysis using an in-house enzyme cocktail was used to evaluate engineered transgenic feedstocks. The carbohydrate compositional analysis showed no significant difference in the amounts of glucan and xylan between the transgenic maize plants expressing CWD enzyme(s) and the control plants. Hydrolysis results demonstrated that transgenic plants expressing CWD enzymes achieved up to 141% higher glucose yield and 172% higher xylose yield over the control plants from enzymatic hydrolysis under the experimental conditions. The hydrolytic performance of a specific xylanase (XynA) expressing transgenic event (XynA.2015.05) was heritable in the next generation, and the improved properties can be achieved even with a 25% reduction in exogenous enzyme loading. Simultaneous saccharification and fermentation of biomass hydrolysates from two different transgenic maize lines with yeast (Saccharomyces cerevisiae D5A) converted 65% of the biomass glucan into ethanol, versus only a 42% ethanol yield with hydrolysates from control plants, corresponding to a 55% improvement in ethanol production.  相似文献   

9.
The presence of lignin is known to reduce the efficiency of the enzymatic hydrolysis of lignocellulosic raw materials. On the other hand, solubilization of hemicellulose, especially of xylan, is known to enhance the hydrolysis of cellulose. The enzymatic hydrolysis of spruce, recognized among the most challenging lignocellulosic substrates, was studied by commercial and purified enzymes from Trichoderma reesei. Previously, the enzymatic hydrolysis of steam pretreated spruce has been studied mainly by using commercial enzymes and no efforts have been taken to clarify the bottlenecks by using purified enzyme components.Steam-pretreated spruce was hydrolyzed with a mixture of Celluclast and Novozym 188 to obtain a hydrolysis residue, expectedly containing the most resistant components. The pretreated raw material and the hydrolysis residue were analyzed for the enrichment of structural bottlenecks during the hydrolysis. Lignin was removed from these two materials with chlorite delignification method in order to eliminate the limitations caused by lignin. Avicel was used for comparison as a known model substrate. Mixtures of purified enzymes were used to investigate the hydrolysis of the individual carbohydrates: cellulose, glucomannan and xylan in the substrates. The results reveal that factors limiting the hydrolysis are mainly due to the lignin, and to a minor extent by the lack of accessory enzymes. Removal of lignin doubled the hydrolysis degree of the raw material and the residue, and reached close to 100% of the theoretical within 2 days. The presence of xylan seems to limit the hydrolysability, especially of the delignified substrates. The hydrolysis results also revealed significant hemicellulose impurities in the commonly used cellulose model substrate, making it questionable to use Avicel as a model cellulose substrate for hydrolysis experiments.  相似文献   

10.
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.  相似文献   

11.
自然界中多糖类生物质资源十分丰富,然而其复杂的抗降解屏障限制了生物转化的进程.近年来,随着生物质多糖结构的快速解析以及大量多糖降解酶的鉴定研究,针对不同底物结构或产物需求,仿制高效微生物多糖代谢途径,精确定制多糖降解酶系,促进生物质高效转化已成为可能.本文分析中性多糖(纤维素和木聚糖)、碱性多糖(几丁质和壳聚糖)以及酸性多糖(褐藻胶)的精细结构组成与基团性质,总结3类多糖主要降解酶的活性架构特征及其底物精确结合模式.文章还阐述蛋白质工程设计与定制策略,针对酶分子不同功能区的分析,可为酶分子的功能快速设计与改造提供靶点,以获得适宜于工业应用的高效酶分子,此外,根据微生物胞外降解酶系的降解次序与协同关系,可基于应用需求精确定制复杂多糖降解酶系,实现生物质的高效与高值降解转化.  相似文献   

12.
Lignin holds tremendous potential as a renewable feedstock for upgrading to a number of high-value chemicals and products that are derived from the petroleum industry at present. Since lignin makes up a significant fraction of lignocellulosic biomass, co-utilization of lignin in addition to cellulose and hemicelluloses is vital to the economic viability of cellulosic biorefineries. The recalcitrant nature of lignin, originated from the molecule's compositional and structural heterogeneity, however, poses great challenges toward effective and selective lignin depolymerization and valorization. Ionic liquid (IL) is a powerful solvent that has demonstrated high efficiency in fractionating lignocellulosic biomass into sugar streams and a lignin stream of reduced molecular weight. Compared to thermochemical methods, biological lignin deconstruction takes place at mild temperature and pressure while product selectivity can be potentially improved via the specificity of biocatalysts (lignin degrading enzymes, LDEs). This review focuses on a lignin valorization strategy by harnessing the biomass fractionating capabilities of ILs and the substrate and product selectivity of LDEs. Recent advances in elucidating enzyme-IL interactions as well as strategies for improving enzyme activity in IL are discussed, with specific emphases on biocompatible ILs, thermostable and IL-tolerant enzymes, enzyme immobilization, and surface charge engineering. Also reviewed is the protein engineering toolsets (directed evolution and rational design) to improve the biocatalysts' activity, stability and product selectivity in IL systems. The alliance between IL and LDEs offers a great opportunity for developing a biocatalytic route for lignin valorization.  相似文献   

13.
In biomass degradation using simultaneous saccharification and fermentation (SSF), there is a need for efficient biomass degrading enzymes that can work at lower temperatures suitable for yeast fermentation. As xylan is an important lignocellulosic biomass constituent, this study aimed at investigating the possible differences in xylan breakdown potential of endoxylanases using eight different endoxylanases at conditions relevant for SSF. Both solubilising and degrading capacities of the endoxylanases were investigated using water-insoluble and water-soluble oat spelt xylan as model substrates for biomass xylan. Results showed that selecting for combinations of endoxylanases that are efficient at solubilising xylan on the one hand and degrading it to large extent on the other hand, coupled to high specific activities, seems the best option for complete xylan breakdown in lignocellulosic biomass conversion using SSF.  相似文献   

14.
Three cellulases, one hemicellulase and three pectinases were used, separately or in binary and ternary combinations, to hydrolyze dried beet-pulp, a by-product of the sugar industry. By IE-HPLC the compositions and concentrations of the sugars released were determined. The results obtained by enzymatic saccharification were compared to those obtained by acid hydrolysis. The synergistic action of cellulolytic and pectinolytic enzymes in release of total monosaccharides, and of glucose, arabinose and galacturonic acid was also studied. The combination of cellulase, hemicellulase and pectinase, commercially available, was as effective in degrading the beet pulp as the acid hydrolysis. Pectinase appeared to be the most important enzyme, since by hydrolyzing the pectic surface of the lignocellulosic substrate, it favoured the degradation of cellulose and hemicellulose by the respective enzymes.  相似文献   

15.
Solid state fermentation of lignocellulosic biomass by filamentous microorganisms to induced enzyme production has been recognized as an attractive and cost effective technology. The secretion profile of lignocellulolytic enzymes by thermostable filamentous Thermobifida fusca (T. fusca) in solid state fermentation of different lignocellulosic biomasses, such as corn stover, hay; saw dust; sugarcane bagasse; wood chips; and un-dried green plant were explored using label-free exponentially modified protein abundance index (emPAI) based quantitative proteomics. Comparative analyses of T. fusca secretion profiles between cellulose and the various lignocellulosic biomasses showed induced expression of cellulolytic proteins by cellulose, and expression of hemicellulose, pectin and lignin degrading enzymes were induced by lignocellulosic biomasses. The solid state fermentation by T. fusca on lignocellulosic biomasses also revealed increased expressions of various transport proteins and hypothetical proteins. The Bray-Curtis similarity indices, clustering, and multidimensional scaling plot explicated differential protein expressions by T. fusca on different lignocellulosic biomasses, indicating that protein secretion by T. fusca is reliant on substrate complexity.  相似文献   

16.
Decomposition of lignocelluloses by cooperative microbial actions is an essential process of carbon cycling in nature and provides a basis for biomass conversion to fuels and chemicals in biorefineries. In this study, structurally stable symbiotic aero-tolerant lignocellulose-degrading microbial consortia were obtained from biodiversified microflora present in industrial sugarcane bagasse pile (BGC-1), cow rumen fluid (CRC-1), and pulp mill activated sludge (ASC-1) by successive subcultivation on rice straw under facultative anoxic conditions. Tagged 16S rRNA gene pyrosequencing revealed that all isolated consortia originated from highly diverse environmental microflora shared similar composite phylum profiles comprising mainly Firmicutes, reflecting convergent adaptation of microcosm structures, however, with substantial differences at refined genus level. BGC-1 comprising cellulolytic Clostridium and Acetanaerobacterium in stable coexistence with ligninolytic Ureibacillus showed the highest capability on degradation of agricultural residues and industrial pulp waste with CMCase, xylanase, and β-glucanase activities in the supernatant. Shotgun pyrosequencing of the BGC-1 metagenome indicated a markedly high relative abundance of genes encoding for glycosyl hydrolases, particularly for lignocellulytic enzymes in 26 families. The enzyme system comprised a unique composition of main-chain degrading and side-chain processing hydrolases, dominated by GH2, 3, 5, 9, 10, and 43, reflecting adaptation of enzyme profiles to the specific substrate. Gene mapping showed metabolic potential of BGC-1 for conversion of biomass sugars to various fermentation products of industrial importance. The symbiotic consortium is a promising simplified model for study of multispecies mechanisms on consolidated bioprocessing and a platform for discovering efficient synergistic enzyme systems for biotechnological application.  相似文献   

17.
Biorefinery of renewable lignocellulosic biomass to biochemical and biofuel is a promising technology to mitigate global warming and fuel shortage but hydrolysis of recalcitrant lignocellulose to its constitutive components is the bottleneck of the process. This work isolated and characterized a new lignocellulose degrading filamentous fungus from decomposing wood in mangrove area. The strain was identified as Coniochaeta sp. according to ITS rRNA sequences and its phylogenic analysis. The extracellular lignocellulolytic enzymes of this fungal strain, when grown on corn stover, were profiled by LC–MS/MS and exponentially modified protein abundance index (emPAI) based label-free quantitative proteomics approach. We identified 107 potential lignocellulolytic enzymes and their functional classification revealed unique extracellular enzyme system constituting multienzyme complexes of cellulases (29%), hemicellulases (17%), glycoside hydrolases (10%), proteases and peptidases (24%), lignin degrading enzymes (7%) and hypothetical proteins (13%). The growth behavior, biochemical assay and LC–MS/MS analysis of secretome by isolated fungal strain revealed its lignocellulose degradation potential when cultivated with corn stover as a major carbon source.  相似文献   

18.
19.
Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25–42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding.  相似文献   

20.
Lignocellulosic waste represents huge amounts of unutilized renewable resource. The use of the polysaccharides in the lignocellulosic complex is limited due to their high lignin content. White rot fungi are capable of selectively degrading lignin, thereby upgrading it. The focus of this article is on the potential utilization of edible mushrooms of the genus Pleurotus, via solid state fermentation, using cotton plant stalks as a substrate. This material poses agrotechnical problems since the stalks have a fibrous structure similar to that of hardwood. Potential uses for this material are as a fuel in rural areas, a substrate for mushrooms, an animal feed and substrate for paper making. In this study, degradation of cotton stalks by Pleurotus is described using chemical analyses and scanning electron microscopy. During four weeks of solid state fermentation, lignin content significantly decreased and in vitro digestibility was increased. The fermentation product was consumed by ruminants at a level of up to 40% of their diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号