首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins is the most complex and metabolically expensive of the lipid posttranslational modifications described to date. The GPI anchor is synthesized via a membrane-bound multistep pathway in the endoplasmic reticulum (ER) requiring >20 gene products. The pathway is initiated on the cytoplasmic side of the ER and completed in the ER lumen, necessitating flipping of a glycolipid intermediate across the membrane. The completed GPI anchor is attached to proteins that have been translocated across the ER membrane and that display a GPI signal anchor sequence at the C terminus. GPI proteins transit the secretory pathway to the cell surface; in yeast, many become covalently attached to the cell wall. Genes encoding proteins involved in all but one of the predicted steps in the assembly of the GPI precursor glycolipid and its transfer to protein in mammals and yeast have now been identified. Most of these genes encode polytopic membrane proteins, some of which are organized in complexes. The steps in GPI assembly, and the enzymes that carry them out, are highly conserved. GPI biosynthesis is essential for viability in yeast and for embryonic development in mammals. In this review, we describe the biosynthesis of mammalian and yeast GPIs, their transfer to protein, and their subsequent processing.  相似文献   

2.
Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors many proteins to the eukaryotic cell surface. The biosynthetic pathway of GPI is mediated by sequential additions of sugars and other components to phosphatidylinositol. Four mannoses in the GPI are transferred from dolichol-phosphate-mannose (Dol-P-Man) and are linked through different glycosidic linkages. Therefore, four Dol-P-Man-dependent mannosyltransferases, GPI-MT-I, -MT-II, -MT-III, and -MT-IV for the first, second, third, and fourth mannoses, respectively, are required for generation of GPI. GPI-MT-I (PIG-M), GPI-MT-III (PIG-B), and GPI-MT-IV (SMP3) were previously reported, but GPI-MT-II remains to be identified. Here we report the cloning of PIG-V involved in transferring the second mannose in the GPI anchor. Human PIG-V encodes a 493-amino acid, endoplasmic reticulum (ER) resident protein with eight putative transmembrane regions. Saccharomyces cerevisiae protein encoded in open reading frame YBR004c, which we termed GPI18, has 25% amino acid identity to human PIG-V. Viability of the yeast gpi18 deletion mutant was restored by human PIG-V cDNA. PIG-V has two functionally important conserved regions facing the ER lumen. Taken together, we suggest that PIG-V is the second mannosyltransferase in GPI anchor biosynthesis.  相似文献   

3.
Glycosylphosphatidylinositol (GPI), covalently attached to many eukaryotic proteins, not only acts as a membrane anchor but is also thought to be a sorting signal for GPI-anchored proteins that are associated with sphingolipid and sterol-enriched domains. GPI anchors contain a core structure conserved among all species. The core structure is synthesized in two topologically distinct stages on the leaflets of the endoplasmic reticulum (ER). Early GPI intermediates are assembled on the cytoplasmic side of the ER and then are flipped into the ER lumen where a complete GPI precursor is synthesized and transferred to protein. The flipping process is predicted to be mediated by a protein referred as flippase; however, its existence has not been proven. Here we show that yeast Arv1p is an important protein required for the delivery of an early GPI intermediate, GlcN-acylPI, to the first mannosyltransferase of GPI synthesis in the ER lumen. We also provide evidence that ARV1 deletion and mutations in other proteins involved in GPI anchor synthesis affect inositol phosphorylceramide synthesis as well as the intracellular distribution and amounts of sterols, suggesting a role of GPI anchor synthesis in lipid flow from the ER.  相似文献   

4.
Glycosylphosphatidylinositol (GPI) is a post-translational modification that anchors cell surface proteins to the plasma membrane, and GPI modifications occur in all eukaryotes. Biosynthesis of GPI starts on the cytoplasmic face of the endoplasmic reticulum (ER) membrane, and GPI precursors flip from the cytoplasmic side to the luminal side of the ER, where biosynthesis of GPI precursors is completed. Gwt1p and PIG-W are inositol acyltransferases that transfer fatty acyl chains to the inositol moiety of GPI precursors in yeast and mammalian cells, respectively. To ascertain whether flipping across the ER membrane occurs before or after inositol acylation of GPI precursors, we identified essential residues of PIG-W and Gwt1p and determined the membrane topology of Gwt1p. Guided by algorithm-based predictions of membrane topology, we experimentally identified 13 transmembrane domains in Gwt1p. We found that Gwt1p, PIG-W, and their orthologs shared four conserved regions and that these four regions in Gwt1p faced the luminal side of the ER membrane. Moreover, essential residues of Gwt1p and PIG-W faced the ER lumen or were near the luminal edge of transmembrane domains. The membrane topology of Gwt1p suggested that inositol acylation occurred on the luminal side of the ER membrane. Rather than stimulate flipping of the GPI precursor across the ER membrane, inositol acylation of GPI precursors may anchor the precursors to the luminal side of the ER membrane, preventing flip-flops.  相似文献   

5.
Glycosylphosphatidylinositol (GPI) acts as a membrane anchor of many cell surface proteins. Its structure and biosynthetic pathway are generally conserved among eukaryotic organisms, with a number of differences. In particular, mammalian and protozoan mannosyltransferases needed for addition of the first mannose (GPI-MT-I) have different substrate specificities and are targets of species- specific inhibitors of GPI biosynthesis. GPI-MT-I, however, has not been molecularly characterized. Characterization of GPI-MT-I would also help to clarify the topology of GPI biosynthesis. Here, we report a human cell line defective in GPI-MT-I and the gene responsible, PIG-M. PIG-M encodes a new type of mannosyltransferase of 423 amino acids, bearing multiple transmembrane domains. PIG-M has a functionally important DXD motif, a characteristic of many glycosyltransferases, within a domain facing the lumen of the endoplasmic reticulum (ER), indicating that transfer of the first mannose to GPI occurs on the lumenal side of the ER membrane.  相似文献   

6.
The 1I gene is expressed in the prespore cells of culminating Dictyostelium discoideum. The open reading frame of 1I cDNA encodes a protein of 155 amino acids with hydrophobic segments at both its NH(2)- and COOH-termini that are indicative of a glycosyl-phosphatidylinositol (GPI)-anchored protein. A hexaHis-tagged form of 1I expressed in D. discoideum cells appeared on Western blot analysis as a doublet of 27 and 24 kDa, with a minor polypeptide of 22 kDa. None of the polypeptides were released from the cell surface with bacterial phosphatidylinositol-specific phospholipase C, although all three were released upon nitrous acid treatment, indicating the presence of a phospholipase-resistant GPI anchor. Further evidence for the C-terminal sequence of 1I acting as a GPI attachment signal was obtained by replacing the GPI anchor signal sequence of porcine membrane dipeptidase with that from 1I. Two constructs of dipeptidase with the 1I GPI signal sequence were constructed, one of which included an additional six amino acids in the hydrophilic spacer. Both of the resultant constructs were targeted to the surface of COS cells and were GPI-anchored as shown by digestion with phospholipase C, indicating that the Dictyostelium GPI signal sequence is functional in mammalian cells. Site-specific antibodies recognising epitopes either side of the expected GPI anchor attachment site were used to determine the site of GPI anchor attachment in the constructs. These parallel approaches show that the C-terminal signal sequence of 1I can direct the addition of a GPI anchor.  相似文献   

7.
Glycosylphosphatidylinositol (GPI) membrane protein anchors are synthesized from sugar nucleotides and phospholipids in the ER and transferred to newly synthesized proteins destined for the cell surface. The topology of GPI synthesis in the ER was investigated using sealed trypanosome microsomes and the membrane-impermeant probes phosphatidylinositol-specific phospholipase C, Con A, and proteinase K. All the GPI biosynthetic intermediates examined were found to be located on the external face of the microsomal vesicles suggesting that the principal steps of GPI assembly occur in the cytoplasmic leaflet of the ER. Protease protection experiments showed that newly GPI-modified trypanosome variant surface glycoprotein was primarily oriented towards the ER lumen, consistent with eventual expression at the cell surface. The unusual topographical arrangement of the GPI assembly pathway suggests that a biosynthetic intermediate, possibly the phosphoethanolamine-containing anchor precursor, must be translocated across the ER membrane bilayer in the process of constructing a GPI anchor.  相似文献   

8.
Phosphatidylinositol transfer protein (PITP) is involved in phospholipase C-mediated signaling and membrane trafficking. We previously reported cloning and characterization of a gene encoding for membrane-bound PITP, named PITPnm, that is a mammalian homologue of the Drosophila retinal degeneration B (rdgB) gene (Aikawa, Y., Hara, H., and Watanabe, T. (1997) Biochem. Biophys. Res. Commun. 236, 559-564). Here we report the subcellular localization of PITPnm protein and provide evidence for its involvement in phosphatidylinositol 4-phosphate (PtdIns 4-P) synthesis. PITPnm is an integral membrane protein that largely localized in close association with membranes of Golgi vacuoles and the endoplasmic reticulum (ER). The amino terminus region of PITPnm was exposed to cytoplasmic side. Interaction with various phosphoinositides was observed in the amino terminus region spanning from 196 amino acids to 257 amino acids of PITPnm. At the amino terminus regions of 1-372 amino acids, PITPnm formed a complex with type III PtdIns 4-kinase. The transmembrane and carboxyl-terminal portions (residues 418-1242) functioned to retain the PITPnm in the Golgi vacuole. These results suggest that PITPnm plays a role in phosphoinositide synthesis on the Golgi vacuoles and possibly in the PtdIns signaling pathway in mammalian cells.  相似文献   

9.
Glycosylphosphatidylinositol (GPI)-anchored cell wall proteins play an important role in the structure and function of the cell wall in yeast and other fungi. Although the majority of characterized fungal GPI-anchored proteins do in fact localize to the cell wall, some are believed to reside at the plasma membrane and not to traffic significantly to the cell wall. There is evidence suggesting that the amino acids immediately upstream of the site of GPI anchor addition (the omega site) serve as the signal determining whether a GPI protein localizes to the cell wall or to the plasma membrane, although this remains controversial. Here, we examine in detail the functional and biochemical differences between the GPI anchor addition signals of putative cell wall (CW) and plasma membrane (PM) GPI proteins. We find strong evidence for the existence of PM-class and CW-class GPI proteins. We show that the biological function of a GPI-CWP is strongly compromised by changing the GPI anchor signal from a CW-class signal to a PM-class signal. Biochemically, this abrogation of function corresponds to a change in the protein from a cell wall form to a membrane form. To understand better the basis for the difference between the two classes of proteins, we mutated the amino acids upstream of the omega site in a GPI-PM protein and selected mutant proteins that were now localized to the cell wall. We were also able to design simple amino acid mutations in a GPI-CW protein that efficiently redirected the protein to the plasma membrane. These studies make clear that different GPI anchor sequences can have dramatic effects on localization of the proteins and help to define the GPI anchor addition signal sequences that distinguish the PM-class and CW-class GPI proteins.  相似文献   

10.
11.
Cells synthesize the GPI anchor carbohydrate core by successively adding N-acetylglucosamine, three mannoses, and phosphoethanolamine (EtN-P) onto phosphatidylinositol, thus forming the complete GPI precursor lipid which is then added to proteins. Previously, we isolated a GPI deficient yeast mutant accumulating a GPI intermediate containing only two mannoses, suggesting that it has difficulty in adding the third, alpha1,2-linked Man of GPI anchors. The mutant thus displays a similar phenotype as the mammalian mutant cell line S1A-b having a mutation in the PIG-B gene. The yeast mutant, herein named gpi10-1 , contains a mutation in YGL142C, a yeast homolog of the human PIG-B. YGL142C predicts a highly hydrophobic integral membrane protein which by sequence is related to ALG9, a yeast gene required for adding Man in alpha1,2 linkage to N-glycans. Whereas gpi10-1 cells grow at a normal rate and make normal amounts of GPI proteins, the microsomes of gpi10-1 are completely unable to add the third Man in an in vitro assay. Further analysis of the GPI intermediate accumulating in gpi10 shows it to have the structure Manalpha1-6(EtN-P-)Manalpha1-4GlcNalpha1- 6(acyl) Inositol-P-lipid. The presence of EtN-P on the alpha1,4-linked Man of GPI anchors is typical of mammalian and a few other organisms but had not been observed in yeast GPI proteins. This additional EtN-P is not only found in the abnormal GPI intermediate of gpi10-1 but is equally present on the complete GPI precursor lipid of wild type cells. Thus, GPI biosynthesis in yeast and mammals proceeds similarly and differs from the pathway described for Trypanosoma brucei in several aspects.   相似文献   

12.
We report the characterization of the novel human protein MDGA1 encoded by MDGA1 (MAM domain containing glycosylphosphatidylinositol anchor-1) gene, firstly termed as GPIM. MDGA1 has been mapped to 6p21 and it is expressed in human tissues and tumors. The deduced polypeptide consists of 955 amino acids and exhibits structural features found in different types of cell adhesion molecules (CAMs), such as the presence of both immunoglobulin domains and a MAM domain or the capacity to anchor to the cell membrane by a GPI (glycosylphosphatidylinositol) motif. Our results demonstrate that human MDGA1 (hMDGA1) is localized in the membrane of eukaryotic cells. The protein follows the secretion pathway and finally it is retained in the cell membrane by a GPI anchor, susceptible to be cleavaged by phospholipase C (PI-PLC). Moreover, our results reveal that hMDGA1 is localized specifically into membrane microdomains known as lipid rafts. Finally, as other proteins of the secretory pathway, hMDGA1 undergoes other post-translational modification consisting of N-glycosylation.  相似文献   

13.
LIMP II is a glycoprotein expressed in the membrane of lysosomes and secretory granules with lysosomal properties. Sequence analysis of a CNBr-cleaved peptide allowed the synthesis of a 47-mer oligonucleotide that was used to screen a rat liver cDNA library in lambda gt11. This resulted in isolation of a 2-kilobase cDNA containing 1,434 bases encoding the entire protein. The deduced amino acid sequence indicates that LIMP II consists of 478 amino acid residues. The segment spanning residues 4-6 to 26 constitute an uncleavable signal peptide. LIMP II possesses a hydrophobic amino acid segment near the carboxyl end, that together with the uncleaved signal peptide may anchor the protein to the membrane through two distant segments. The major portion of the protein resides on the luminal side and displays 11 potential N-glycosylation sites and 5 cysteine residues. Two short cytoplasmic tails, 2-4 and 20-21 amino acids long, correspond to the NH2- and COOH-terminal ends of the protein, respectively. Transfection of COS cells with the cDNA of LIMP II resulted in expression of the protein and its transport to lysosomes. Comparison of the entire sequence to various data bases of known proteins revealed extensive homology between LIMP II and the cell surface protein CD36 involved in cell adhesion. No significant homology was detected with the two families of lysosomal membrane proteins A and B, recently described.  相似文献   

14.
The signal sequence within polypeptide chains that designates whether a protein is to be anchored to the membrane by a glycosylphosphatidylinositol (GPI) anchor is characterized by a carboxyl-terminal hydrophobic domain preceded by a short hydrophilic spacer linked to the GPI anchor attachment (omega) site. The hydrophobic domain within the GPI anchor signal sequence is very similar to a transmembrane domain within a stop transfer sequence. To investigate whether the GPI anchor signal sequence is translocated across or integrated into the endoplasmic reticulum membrane we studied the translocation, GPI anchor addition, and glycosylation of different variants of a model GPI-anchored protein. Our results unequivocally demonstrated that the hydrophobic domain within a GPI signal cannot act as a transmembrane domain and is fully translocated even when followed by an authentic charged cytosolic tail sequence. However, a single amino acid change within the hydrophobic domain of the GPI-signal converts it into a transmembrane domain that is fully integrated into the endoplasmic reticulum membrane. These results demonstrated that the translocation machinery can recognize and differentiate subtle changes in hydrophobic sequence allowing either full translocation or membrane integration.  相似文献   

15.
Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p's lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4-174) harbors a single amino acid change in motif 2. The mcd4-174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4-174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4-174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors. Together, these studies demonstrate that MCD4 encodes a new, conserved component of the GPI anchor synthesis pathway and highlight the intimate connections between GPI anchoring, bud emergence, cell wall function, and feedback mechanisms likely to be involved in regulating each of these essential processes. A putative role for Mcd4p as participating in the modification of GPI anchors with side chain phosphoethanolamine is also discussed.  相似文献   

16.
Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-(3)H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-(3)H]mannose or UDP-[6-(3)H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER.  相似文献   

17.
The product of the growth arrest specific gene, gas1, is a membrane-associated protein which activates a p53-dependent growth suppression signalling pathway. We have shown that Gas1 is linked to the plasma membrane through a glycosyl-phosphatidylinositol (GPI) anchor. Several GPI-anchored protein have been identified as part of receptor complexes either as co-receptors or as membrane bound ligands. In this report, we characterize the Gas1 domains required for its growth suppression function and demonstrate the dispensability of Gas1 GPI anchor.  相似文献   

18.
19.
A carboxyl-terminal hydrophobic domain is an essential component of the processed signal for attachment of the glycosyl-phosphatidylinositol (GPI) membrane anchor to proteins and it is linked to the site (omega) of GPI modification by a spacer domain. This study was designed to test the hypothesis that the hydrophobic domain interacts with the lipid bilayer of the endoplasmic reticulum (ER) membrane to optimally position the omega site for GPI modification. The hydrophobic domain of the GPI signal in the human folate receptor (FR) type alpha was substituted with the carboxyl-terminal segment of the low-density lipoprotein receptor (LDLR), including its membrane spanning region, without altering either the spacer or the omega site. The FR-alpha/LDLR chimera was not GPI modified but was attached to the plasma membrane by a polypeptide anchor. When the carboxyl-terminal half of the hydrophobic transmembrane polypeptide in the FR-alpha/LDLR chimera was altered by introduction of negatively charged (Asp) residues, or when the cytosolic domain in the chimera was deleted, the mutated proteins became GPI-anchored. On the other hand, attachment of a carboxyl-terminal segment of LDLR including the entire cytosolic domain to FR-alpha converted it into a transmembrane protein. The results indicate that in the FR-alpha/LDLR chimera the inability of the cellular machinery for GPI modification to recognize the hydrophobic domain is not due to the intrinsic nature of the peptide, but is rather due to the retention of the peptide within the lipid bilayer. It follows that the hydrophobic domain in the signal for GPI modification must traverse the ER membrane prior to recognition of the omega site by the GPI-protein transamidase. The results thus establish a critical topographical requirement for recognition of the GPI signal in the ER.  相似文献   

20.
Yeast Gpi8p is essential for GPI anchor attachment onto proteins.   总被引:17,自引:2,他引:15       下载免费PDF全文
Glycosylphosphatidylinositol (GPI) anchors are added onto newly synthesized proteins in the ER. Thereby a putative transamidase removes a C-terminal peptide and attaches the truncated protein to the free amino group of the preformed GPI. The yeast mutant gpi8-1 is deficient in this addition of GPIs to proteins. GPI8 encodes for an essential 47 kDa type I membrane glycoprotein residing on the luminal side of the ER membrane. GPI8 shows significant homology to a novel family of vacuolar plant endopeptidases one of which is supposed to catalyse a transamidation step in the maturation of concanavalin A and acts as a transamidase in vitro. Humans have a gene which is highly homologous to GPI8 and can functionally replace it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号