首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional tissue construct was created using adipose-derived stromal vascular fraction (SVF) cells and evaluated as a microvascular protection treatment in a myocardial infarction (MI) model. This study evaluated coronary blood flow (BF) and global left ventricular function after MI with and without the SVF construct. Fischer-344 rats were separated into four groups: sham operation (sham), MI, MI Vicryl patch (no cells), and MI SVF construct (MI SVF). SVF cells were labeled with green fluorescent protein (GFP). Immediately postinfarct, constructs were implanted onto the epicardium at the site of ischemia. Four weeks postsurgery, the coronary BF reserve was significantly decreased by 67% in the MI group and 75% in the MI Vicryl group compared with the sham group. The coronary BF reserve of the sham and MI SVF groups in the area at risk was not significantly different (sham group: 83 ± 22% and MI SVF group: 57 ± 22%). Griffonia simplicifolia I and GFP-positive SVF immunostaining revealed engrafted SVF cells around microvessels in the infarct region 4 wk postimplant. Overall heart function, specifically ejection fraction, was significantly greater in MI SVF hearts compared with MI and MI Vicryl hearts (MI SVF: 66 ± 4%, MI: 37 ± 8%, and MI Vicryl: 29 ± 6%). In conclusion, adipose-derived SVF cells can be used to construct a novel therapeutic modality for treating microvascular instability and ischemia through implantation on the epicardial surface of the heart. The SVF construct implanted immediately after MI not only maintains heart function but also sustains microvascular perfusion and function in the infarct area by sustaining the coronary BF reserve.  相似文献   

2.
We compared the influence of aerobic and resistance exercise on cardiac remodelling, physical capacity and skeletal muscle oxidative stress in rats with MI‐induced heart failure. Three months after MI induction, Wistar rats were divided into four groups: Sham; sedentary MI (S‐MI); aerobic exercised MI (A‐MI); and resistance exercised MI (R‐MI). Exercised rats trained three times a week for 12 weeks on a treadmill or ladder. Statistical analysis was performed by ANOVA or Kruskal‐Wallis test. Functional aerobic capacity was greater in A‐MI and strength gain higher in R‐MI. Echocardiographic parameters did not differ between infarct groups. Reactive oxygen species production, evaluated by fluorescence, was higher in S‐MI than Sham, and lipid hydroperoxide concentration was lower in A‐MI than the other groups. Glutathione peroxidase activity was higher in A‐MI than S‐MI and R‐MI. Superoxide dismutase was lower in S‐MI than Sham and R‐MI. Gastrocnemius cross‐sectional area, satellite cell activation and expression of the ubiquitin‐proteasome system proteins did not differ between groups. In conclusion, aerobic exercise and resistance exercise improve functional capacity and maximum load carrying, respectively, without changing cardiac remodelling in infarcted rats. In the gastrocnemius, infarction increases oxidative stress and changes antioxidant enzyme activities. Aerobic exercise reduces oxidative stress and attenuates superoxide dismutase and glutathione peroxidase changes.  相似文献   

3.
Ke Q  Yang Y  Rana JS  Chen Y  Morgan JP  Xiao YF 《生理学报》2005,57(6):673-681
我们以往的研究表明,直接在心肌梗塞(myocardial infarction,MI)动物的心脏缺血区注射胚胎干细胞(embryonic stemceils,ESCs)可以提高其心肌功能,干细胞组织工程学可以使组织再生、修复。本研究旨在观察将ESCs接种到生物降解膜内并移植到梗塞部位的效果。通过结扎小鼠左冠状动脉制作MI模型,将培养3d的带有小鼠ESCs的聚羟基乙酸膜(polyglycolicacid,PGA)移植到心肌缺血及边缘区表面。实验小鼠分成4组:假手术组、MI组、MI+PGA组、MI+ESC组,移植操作8周后检测血流动力学和心肌功能。MI组的血压和左心室功能显著降低。与MI组和MI+PGA组相比,MI+ESC组的血压和心室功能显著改善,存活率也显著增高,在梗塞区检测到GFP阳性组织,表明ESCs存活,并可能有心肌再生。以上结果表明,移植生物降解膜内的ESCs可修复小鼠梗塞区心肌细胞并提高心脏功能。将ESCs和生物降解材料联合运用可能为修复受损心脏提供一个新的治疗方法。  相似文献   

4.
Transport of myo-inositol (MI) was studied in primary cultures of bovine retinal pigment epithelial (RPE) cells. At low external concentrations (0.01-1 mM), uptake appeared to follow saturation kinetics, although the reciprocal forms of the rate equations did not fit either Lineweaver-Burk or Eadie-Hofstee plots. Increasing external concentrations dramatically changed the pattern of MI entry. At two to three orders of magnitude higher than physiological concentrations, a second saturation occurred (pseudo saturation). Cells incubated with 20 microM [3H]MI for 60 min had a ratio of intracellular to extracellular radioactivity greater than or equal to 8, indicating active transport. MI transport reduction by Na+ replacement or inhibitors (phlorizin, ouabain, amiloride, KSCN, iodoacetamide, MI analogues) was greater when RPE cells were incubated with low (20-400 microM) than with high (10-20 mM) MI concentrations. Cells incubated with 20 microM MI at 53 or 65 degrees C showed increased transport (up to 560%) compared with cells at 22 degrees C. The effect on MI uptake (20 microM) of Na+ replacement also was reduced at 53 degrees C. The uptake of MI involved at least two transport systems. The major mechanism at low external MI concentrations (physiological levels) was a carrier-mediated active process. At high external MI levels, uptake occurred by a diffusion process. A lipotropic effect of MI may be responsible for this increased rate of diffusion.  相似文献   

5.
The purpose of this study was to assess whether electrical stimulation-induced increases in muscular activity could improve capillary supply and correct previously documented abnormal vasodilator and vasoconstrictor responses of arterioles in limb skeletal muscle post-myocardial infarction (MI). Extensor digitorum longus (EDL) muscle from rats with surgically induced MI ( approximately 30% of the left ventricle) was chronically stimulated (Stim) 8 h/day for 6 +/- 1 days, at 11 wk post-MI. Third- (3A) and fourth-order (4A) arterioles in EDL from nine MI rats and four MI+Stim rats were compared with those of 11 controls (Con). Compared with Con rats, MI alone caused a reduction in the resting diameter of 3A and 4A arterioles, which was completely reversed by MI+Stim. However, Stim did not correct the attenuated vasodilator response to 10(-4) M adenosine seen in 4A arterioles from MI rats compared with Con. The constrictor response of both 3A and 4A vessels in MI rats to low doses of acetylcholine (10(-9) M, 10(-8) M) and norepinephrine (10(-9) M) was accentuated in MI+Stim. The proportion of oxidative fibers in EDL was unaffected by MI or MI+Stim combination. However, Stim significantly increased (P < 0.05) the capillary-to-fiber ratio in this muscle compared with Con. Thus, although the increase in muscle activity induced by chronic electrical stimulation normalized the reduction in resting vessel diameter seen after MI, it failed to correct the abnormalities in vasoreactivity of these same vessels.  相似文献   

6.
Myocardial remodeling after myocardial infarction (MI) is associated with increased levels of the matrix metalloproteinases (MMPs). Levels of two MMP species, MMP-2 and MMP-9, are increased after MI, and transgenic deletion of these MMPs attenuates post-MI left ventricular (LV) remodeling. This study characterized the spatiotemporal patterns of gene promoter induction for MMP-2 and MMP-9 after MI. MI was induced in transgenic mice in which the MMP-2 or MMP-9 promoter sequence was fused to the beta-galactosidase reporter, and reporter level was assayed up to 28 days after MI. Myocardial localization with respect to cellular sources of MMP-2 and MMP-9 promoter induction was examined. After MI, LV diameter increased by 70% (P < 0.05), consistent with LV remodeling. beta-Galactosidase staining in MMP-2 reporter mice was increased by 1 day after MI and increased further to 64 +/- 6% of LV epicardial area by 7 days after MI (P < 0.05). MMP-2 promoter activation occurred in fibroblasts and myofibroblasts in the MI region. In MMP-9 reporter mice, promoter induction was detected after 3 days and peaked at 7 days after MI (53 +/- 6%, P < 0.05) and was colocalized with inflammatory cells at the peri-infarct region. Although MMP-2 promoter activation was similarly distributed in the MI and border regions, activation of the MMP-9 promoter was highest at the border between the MI and remote regions. These unique findings visually demonstrated that activation of the MMP-2 and MMP-9 gene promoters occurs in a distinct spatial relation with reference to the MI region and changes in a characteristic time-dependent manner after MI.  相似文献   

7.
Brain reperfusion may be of particular importance in the etiology of periventricular leukomalacia, of which the common findings are gliosis and ventricular dilatation. To investigate the mechanism of this pathogenesis, we used a metabolic inhibition (MI) model using cyanide plus deoxyglucose treatment of cultured glia isolated from fetal rat brain and examined the activity of extracellular signal-regulated protein kinase (ERK) during MI and also during the recovery from MI of 30 min. ERK activation was stimulated during MI and the recovery from MI. The time course and extent of activation of ERK during MI and the recovery from MI, however, were distinctly different. Activation of ERK was stimulated within 5 min of MI and declined thereafter. Activation of ERK was sustained during the recovery phase from MI and the extent of the activation was much greater than that during MI. Pretreatment with EGTA to eliminate extracellular Ca(2+), or with APV, an NMDA receptor antagonist, to inhibit Ca(2+) influx through the NMDA receptor, attenuated the activation of ERK. Moreover, pretreatment with PMA to downregulate PKC abolished the activation of ERK. PD98059, an inhibitor of ERK kinase, attenuated the cell proliferation induced by MI followed by recovery from MI. These results suggest that ERK is involved in gliosis during the recovery phase from MI and may play a role in the etiology of periventricular leukomalacia.  相似文献   

8.
We studied the effects of chronic losartan (Los) treatment on contractile function of isolated right ventricular (RV) trabeculae from rat hearts 12 wk after left ventricular (LV) myocardial infarction (MI) had been induced by ligation of the left anterior descending artery at 4 wk of age. After recovery, one-half of the animals were started on Los treatment (MI+Los; 30 mg x kg(-1) x day(-1) per os); the remaining animals were not treated (MI group). Rats without infarction or Los treatment served as controls (Con group). MI resulted in increases in LV and RV weight and unstressed LV cavity diameter; these were partially prevented by Los treatment. The active peak twitch force-sarcomere length relation was depressed in MI compared with either Con or MI+Los. Likewise, maximum Ca2+ saturated twitch force was depressed in MI, whereas twitch relaxation and twitch duration were prolonged. Myofilament function, as measured in skinned trabeculae, was not significantly different among the Con, MI, and MI+Los groups. We conclude that Los prevents contractile dysfunction in rat RV trabeculae after LV MI. Our results suggest that the beneficiary effect of Los treatment results not from improved myofilament function but rather from improved myocyte Ca2+ homeostasis.  相似文献   

9.
After a myocardial infarction (MI), an episode of ischemia-reperfusion (I/R) can result in a greater impairment of left ventricular (LV) regional function (LVRF) than that caused by an initial I/R episode in the absence of MI. Membrane type-I matrix metalloproteinase (MT1-MMP) proteolytically processes the myocardial matrix and is upregulated in LV failure. This study tested the central hypothesis that a differential induction of MT1-MMP occurs and is related to LVRF after I/R in the context of a previous MI. Pigs with a previous MI [3 wk postligation of the left circumflex artery (LCx)] or no MI were randomized to undergo I/R [60-min/120-min left anterior descending coronary artery (LAD) occlusion] or no I/R as follows: no MI and no I/R (n = 6), no MI and I/R (n = 8), MI and no I/R (n = 8), and MI and I/R (n = 8). Baseline LVRF (regional stroke work, sonomicrometry) was lower in the LAD region in the MI group compared with no MI (103 ± 12 vs. 188 ± 26 mmHg·mm, P < 0.05) and remained lower with peak ischemia (35 ± 8 vs. 88 ± 17 mmHg·mm, P < 0.05). Using a novel interstitial microdialysis method, MT1-MMP was directly measured and was over threefold higher in the LCx region and over twofold higher in the LAD region in the MI group compared with the no MI group at baseline. MT1-MMP fluorogenic activity was persistently elevated in the LCx region in the MI and I/R group but remained unchanged in the LAD region. In contrast, no changes in MT1-MMP occurred in the LCx region in the no MI and I/R group but increased in the LAD region. MT1-MMP mRNA was increased by over threefold in the MI region in the MI and I/R group. In conclusion, these findings demonstrate that a heterogeneous response in MT1-MMP activity likely contributes to regional dysfunction with I/R and that a subsequent episode of I/R activates a proteolytic cascade within the MI region that may contribute to a continued adverse remodeling process.  相似文献   

10.
The transition of oocytes from meiosis I (MI) to meiosis II (MII) requires partial cyclin B degradation to allow MI exit without S phase entry. Rapid reaccumulation of cyclin B allows direct progression into MII, producing a cytostatic factor (CSF)-arrested egg. It has been reported that dampened translation of the anaphase-promoting complex (APC) inhibitor Emi2 at MI allows partial APC activation and MI exit. We have detected active Emi2 translation at MI and show that Emi2 levels in MI are mainly controlled by regulated degradation. Emi2 degradation in MI depends not on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but on Cdc2-mediated phosphorylation of multiple sites within Emi2. As in MII, this phosphorylation is antagonized by Mos-mediated recruitment of PP2A to Emi2. Higher Cdc2 kinase activity in MI than MII allows sufficient Emi2 phosphorylation to destabilize Emi2 in MI. At MI anaphase, APC-mediated degradation of cyclin B decreases Cdc2 activity, enabling Cdc2-mediated Emi2 phosphorylation to be successfully antagonized by Mos-mediated PP2A recruitment. These data suggest a model of APC autoinhibition mediated by stabilization of Emi2; Emi2 proteins accumulate at MI exit and inhibit APC activity sufficiently to prevent complete degradation of cyclin B, allowing MI exit while preventing interphase before MII entry.  相似文献   

11.
Neural connectivity was measured during motor imagery (MI) and motor execution (ME) using magnetoencephalography in nine healthy subjects, MI, and at rest. Lower coherence values during ME and MI between sensorimotor areas than at rest, and lower values during MI between the left supplementary motor area and inferior frontal gyrus than ME suggested the sensorimotor network of MI functioned with similar connectivity to ME and that the inhibitory activity functioned continuously during MI, respectively.  相似文献   

12.
It has been reported that activation of autonomic effectors during mental simulation of voluntary motor actions (motor imagery: MI) may be explained by two different factors, i.e., functions of preparation or anticipation of actual exercise (motor anticipation) and the central motor programming/planning which acts during actual motor action (motor programming). This study was designed to clarify how these factors participate during MI, utilizing two mental tasks with high mental stress, i.e., MI and mental arithmetic (MA). Several autonomic effectors' responses were compared between MI of a 500 m speed skating sprint and MA. Subjects were eight 18 to 25 year old young male speed skate athletes, all of them could easily and vividly imagine a 500 m speed skating sprint. Duration of the MI ranged from 35 to 38 sec and these were very close to each subject's actual best record (means of absolute differences were less than 0.6 sec, i.e., less than 1.7% relatively). A significant decrease of skin resistance (SR), increases of heart rate (HR) and respiration rate were observed in both MI and MA when compared to each control resting level (excluding one subject for respiration rate during MI). SR decreased during MI (mean and SD of 8 subjects: 45.9 +/- 17.7%) and MA (39.7 +/- 16.8%), with no significant differences between MI and MA (t = 1.29, by paired t-test). HR increased significantly above control values in MA (10.3 +/- 4.3%) and MI (44.3 +/- 18.8%). However, the increase during MA was significantly smaller (t = 4.99, p < 0.001) than in MI. Respiratory rate increased significantly in both MI (46.5 +/- 30.9%) and MA (27.7 +/- 14.6%), with no significant difference between MI and MA (t = 1.82) due to the large individual variation in MI. The frequency of respiration was fairly regular during MA, but quite irregular during MI (similar to those during actual motor actions). The central nervous system which acts in MI may possess the function of activation of target effectors which play an important role in actual exercise, on the basis of incremental vigilance level induced by the function of motor anticipation.  相似文献   

13.
Recent studies suggest that the forebrain contributes to the circulatory derangements leading to heart failure after myocardial injury. We tested that hypothesis by examining the effect of myocardial infarction (MI) or sham MI (MI-s) on neurohumoral regulation in rats with prior anteroventral (AV) third ventricle lesion (AV3V-x) or sham lesion (AV3V-s). AV3V-s/MI rats had higher sodium intake, lower urine volume, and lower urinary sodium excretion than AV3V-s/MI-s rats. AV3V-x/MI rats had lower sodium intake and higher urine volume than AV3V-s/MI or AV3V-s/MI-s rats and urinary sodium excretion comparable to AV3V-s/MI-s rats. AV3V-x had no effect on baseline plasma renin activity (PRA). One week after MI, PRA had increased in AV3V-s but decreased in AV3V-x rats. AV3V-x reduced renal sympathetic nerve activity in MI and MI-s rats. AV3V-x improved baroreflex function in MI rats but diminished it in MI-s rats. Survival beyond 2 wk was lower in the AV3V-x/MI rats than in all other groups. These results confirm a critical role for the forebrain in the neurohumoral adjustments to MI.  相似文献   

14.

Introduction

The expression of hundreds of genes is altered in response to left ventricular (LV) remodeling following large transmural myocardial infarction (MI). Thyroid hormone (TH) improves LV remodeling and cardiac performance after MI. However, the molecular basis is unknown.

Methods

MI was produced by ligation of the left anterior descending coronary artery in female SD rats. Rats were divided into the following groups: (1) Sham MI, (2) MI, and (3) MI+T4 treatment (T4 pellet 3.3 mg, 60 days release, implanted subcutaneously immediately following MI). Four weeks after surgery, total RNA was isolated from LV non-infarcted areas for microarray analysis using the Illumina RatRef-12 Expression BeadChip Platform.

Results

Signals were detected in 13,188 genes (out of 22,523), of which the expression of 154 genes were decreased and the expression of 200 genes were increased in MI rats compared with Sham MI rats (false discovery rate (FDR) <0.05). Compared to MI rats, T4 treatment decreased expression of 27 genes and increased expression of 28 genes. In particular, 6 genes down-regulated by MI and 12 genes up-regulated by MI were reversed by T4. Most of the 55 genes altered by T4 treatment are in the category of molecular function under binding (24) and biological processes which includes immune system process (9), multi-organism process (5) and biological regulation (19) nonexclusively.

Conclusions

These results suggest that altered expression of genes for molecular function and biological process may be involved in the beneficial effects of thyroid hormone treatment following MI in rats.  相似文献   

15.
Depression is an independent risk factor for cardiovascular events and mortality in patients with myocardial infarction (MI). Excessive sympathetic activation and serious myocardial remodeling may contribute to this association. The aim of this study was to discuss the effect of depression on sympathetic activity and myocardial remodeling after MI. Wild-type (WT) rats were divided into a sham group (Sham), a myocardial infarction group (MI), a depression group (D), and a myocardial infarction plus depression group (MI+D). Compared with controls, the MI+D animals displayed depression-like behaviors and attenuated body weight gain. The evaluation of sympathetic activity showed an increased level in plasma concentrations of epinephrine and norepinephrine and higher expression of myocardial tyrosine hydroxylase in the MI+D group than the control groups (p<0.05 for all). Cardiac function and morphologic analyses revealed a decreased fractional shortening accompanied by increased left ventricular dimensions, thinning myocardium wall, and reduced collagen repair in the MI+D group compared with the MI group (p<0.05 for all). Frequent premature ventricular contractions, prolonged QT duration and ventricular repolarization duration, shorted effective refractory period, and increased susceptibility to ventricular arrhythmia were displayed in MI+D rats. These results indicate that sympathetic hyperactivation and exacerbated myocardial remodeling may be a plausible mechanism linking depression to an adverse prognosis after MI.  相似文献   

16.
In this study, effects of Lacidipine (LAC), Ramipril (RAM) and Valsartan (VAL) on DNA damage and oxidative stress occurred in acute and chronic periods after isoproterenol (ISO)-induced myocardial infarct (MI) were investigated in rats. LAC, RAM and VAL had been administered by oral gavage at 3, 3 and 30 mg/kg doses, respectively, in acute and chronic periods following MI. In acute MI model, LAC, RAM and VAL had been administered once per day to rat groups during 30 days. On days 29 and 30, the rats of the acute MI control and drug treatment groups were administered 180 mg/kg ISO, subcutaneously at an interval of 24 h. In chronic MI model, LAC, RAM and VAL had been administered to rat groups during 30 days, and on the 1st and 2nd days, the rats of the chronic MI control and drug treatment groups were administered ISO, by the same way. After this period, routine biochemistry indicators of MI, alanin aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase-isoenzymes (CK-MB), troponin I (TnI) and nitric oxide (NO), oxidative stress indicator, has been measured in the serums obtained from rat’s blood. Also, 7,8-Dihydro-8-oxo-guanine (8-OHGua), which is an indicator of DNA damage level, has been determined in whole blood. After MI diagnosis, the relationships among the 8-OHGua, NO and clinic MI indicators have been determined. Results have been evaluated by comparing with that of control group. In control groups, the clinic MI indicators have been found to be statistically higher than the drug groups. In parallel to this increase in MI indicators, there have been determined a significant decrease in NO levels and an increase in 8-OHGua level. There was no significant difference in the rat groups which received drugs without MI induction. We have observed that the level of 8-OHGua which increased after MI in both acute and chronic periods decreased by LAC, RAM and VAL when compared to acute and chronic MI control groups. In conclusion, it has been determined that oxidative stress has been increased after ISO induced MI model and this stress reduces NO and even damages DNA. LAC, RAM and VAL may decrease the severity of MI and prevent DNA damage by reducing oxidative stress.  相似文献   

17.
Seaman SR  White IR  Copas AJ  Li L 《Biometrics》2012,68(1):129-137
Two approaches commonly used to deal with missing data are multiple imputation (MI) and inverse-probability weighting (IPW). IPW is also used to adjust for unequal sampling fractions. MI is generally more efficient than IPW but more complex. Whereas IPW requires only a model for the probability that an individual has complete data (a univariate outcome), MI needs a model for the joint distribution of the missing data (a multivariate outcome) given the observed data. Inadequacies in either model may lead to important bias if large amounts of data are missing. A third approach combines MI and IPW to give a doubly robust estimator. A fourth approach (IPW/MI) combines MI and IPW but, unlike doubly robust methods, imputes only isolated missing values and uses weights to account for remaining larger blocks of unimputed missing data, such as would arise, e.g., in a cohort study subject to sample attrition, and/or unequal sampling fractions. In this article, we examine the performance, in terms of bias and efficiency, of IPW/MI relative to MI and IPW alone and investigate whether the Rubin's rules variance estimator is valid for IPW/MI. We prove that the Rubin's rules variance estimator is valid for IPW/MI for linear regression with an imputed outcome, we present simulations supporting the use of this variance estimator in more general settings, and we demonstrate that IPW/MI can have advantages over alternatives. IPW/MI is applied to data from the National Child Development Study.  相似文献   

18.
The present study aimed to investigate the protective effects of rAAV9-CyclinA2 combined with fibrin glue (FG) in vivo in rats after myocardial infarction (MI). Ninety male Sprague–Dawley rats were randomized into 6 groups (15 in each group): sham, MI, rAAV9-green fluorescent protein (GFP)?+?MI, rAAV9-CyclinA2?+?MI, FG?+?MI, and rAAV9-CyclinA2?+?FG?+?MI. Packed virus (5?×?1011vg/ml) in 150 µl of normal saline or FG was injected into the infarcted myocardium at five locations in rAAV9-GFP?+?MI, rAAV9-CyclinA2?+?MI, and rAAV9-CyclinA2?+?FG?+?MI groups. The sham, MI, and FG?+?MI groups were injected with an equal volume of normal saline or FG at the same sites. Five weeks after injection, echocardiography was performed to evaluate the left ventricular function. The expressions of CyclinA2, proliferating cell nuclear antigen (PCNA), and phospho-histone-H3 (H3P), vascular density, and infarct area were assessed by Western blot, immunohistochemistry, immunofluorescence, and Masson staining. As a result, the combination of rAAV9-CyclinA2 and FG increased ejection fraction and fractional shortening compared with FG or rAAV9-CyclinA2 alone. The expression level of CyclinA2 was significantly higher in the rAAV9-CyclinA2?+?FG?+?MI group compared with the rAAV9-CyclinA2?+?MI and FG?+?MI groups (70.1?±?1.86% vs. 14.74?±?2.02%, P?<?0.01; or vs. 50.13?±?3.80%; P?<?0.01). A higher expression level of PCNA and H3P was found in the rAAV9-CyclinA2?+?FG?+?MI group compared with other groups. Comparing with other experiment groups, collagen deposition and the infarct size significantly decreased in rAAV9-CyclinA2?+?Fibrin?+?MI group. The vascular density was much higher in the rAAV9-CyclinA2?+?FG?+?MI group compared with the rAAV9-CyclinA2?+?MI group. We concluded that fibrin glue combined with rAAV9-CyclinA2 was found to be effective in cardiac remodeling and improving myocardial protection.  相似文献   

19.
BackgroundRenal failure aggravates pathological cardiac remodelling induced by myocardial infarction (MI). Cardiac remodelling is associated with telomere shortening, a marker for biological ageing. We investigated whether mild and severe renal failure shorten cardiac telomeres and excessively shorten telomeres after MI. MethodsRats were subjected to sham, unilateral (UNX) or 5/6th nephrectomy (5/6NX) to induce none, mild or severe renal failure. MI was induced by left coronary artery ligation. Renal function parameters and blood pressure were measured. DNA was isolated from non-infarcted cardiac tissue. Telomere length was assessed by quantitative polymerase chain reaction (PCR). ResultsProteinuria was unchanged in UNX and MI compared with control, but strongly increased in 5/6NX, UNX+MI and 5/6NX+MI. Serum creatinine levels were increased fourfold in 5/6NX and tenfold in 5/6NX+MI. 5/6NX and groups with both renal failure and MI showed an approximate 20% reduction of telomere length, similar to the MI group. No excess telomere shortening was observed in hearts from rats with renal ablation after MI. ConclusionSevere renal failure, but not mild renal failure, leads to shortening of cardiac telomeres to a similar extent as found after MI. Renal failure did not induce excessive telomere shortening after MI. (Neth Heart J 2009;17:190–4.)  相似文献   

20.
Right ventricular (RV) weight increases dependent on time after myocardial infarction (MI) and on MI size. The sequential changes in RV volume and hemodynamics and their relations to left ventricular (LV) remodeling after MI are unknown. We therefore examined the time course of RV remodeling in rats with LV MI. MI was produced by left coronary artery ligation. Four, eight, and sixteen weeks later, LV and RV hemodynamic measurements were performed and pressure-volume curves were obtained. For serial measurement of RV volumes and performance, cine-MRI was performed 2 and 8 wk after MI. The ratios of beta-myosin heavy chain (MHC) to alpha-MHC and skeletal to cardiac alpha-actin were determined for the RV and LV after large MI or sham operation. RV weight increased in rats with MI, as did RV volume. RV pressure-volume curves were shifted toward larger volumes 16 wk after large MI. RV systolic pressure increased gradually over time; however, the gain in RV weight was always in excess of RV systolic pressure. The ratios of skeletal to cardiac alpha-actin and beta-MHC to alpha-MHC were increased after MI in both ventricles in a similar fashion. Because RV wall stress was not increased after infarction, mechanical factors may not conclusively explain hypertrophy, which maintained balanced loading conditions for the RV even after large LV infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号