首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming on rich medium and, upon starvation, aggregation to form fruiting bodies containing spores. Both of these behaviours require multiple Ser/Thr protein kinases. In this paper, we report the first Ser/Thr protein phosphatase gene, pph1, from M. xanthus. DNA sequence analysis of pph1 indicates that it encodes a protein of 254 residues (Mr = 28 308) with strong homology to eukaryotic PP2C phosphatases and that it belongs to a new group of bacterial protein phosphatases that are distinct from bacterial PP2C phosphatases such as RsbU, RsbX and SpoIIE. Recombinant His-tagged Pph1 was purified from Escherichia coli and shown to have Mn2+ or Mg2+ dependent, okadaic acid-resistant phosphatase activity on a synthetic phosphorylated peptide, RRA(pT)VA, indicating that Pph1 is a PP2C phosphatase. Pph1-expression was observed under both vegetative and developmental conditions, but peaked during early aggregation. A pph1 null mutant showed defects during late vegetative growth, swarming and glycerol spore formation. Under starvation-induced developmental conditions, the mutant showed reduced aggregation and failure to form fruiting bodies with viable spores. Using the yeast two-hybrid system, we have observed a strong interaction between Pph1 and the M. xanthus protein kinase Pkn5, a negative effector of development. These results suggest a functional link between a Pkn2-type protein kinase and a PP2C phosphatase.  相似文献   

2.
The p21-activated kinase(Pak) 2 undergoes rapid autophosphorylation/activation in neutrophils stimulated with a variety of chemoattractants (e.g., fMLP). Phosphorylation within the activation loop (Thr(402)) and inhibitory domain (Ser(141)) is known to increase the activity of Pak in vitro, whereas phosphorylation within the Nck (Ser(20)) and Pak-interacting guanine nucleotide exchange factor (Ser(192) and Ser(197)) binding sites blocks the interactions of Pak 2 with these proteins. A panel of phosphospecific Abs was used to investigate the phosphorylation of Pak 2 in neutrophils at these sites. Pak 2 underwent rapid (< or =15 s) phosphorylation at Ser(20), Ser(192/197), and Thr(402) in neutrophils stimulated with fMLP. Phosphorylation at Ser(192/197) and Thr(402) were highly transient events, whereas that at Ser(20) was more persistent. In contrast, Pak 2 was constitutively phosphorylated at Ser(141) in unstimulated neutrophils and phosphorylation at this site was less sensitive to cell stimulation than at other residues. Studies with selective inhibitors suggested that a variety of phosphatases might be involved in the rapid dephosphorylation of Pak 2 at Thr(402) in stimulated neutrophils. This was consistent with biochemical studies which showed that the activation loop of GST-Pak 3, which is homologous to that in Pak 2, was a substrate for protein phosphatase 1, 2A, and a Mg(2+)/Mn(2+)-dependent phosphatase(s) which exhibited properties different from those of the conventional isoforms of protein phosphatase 2C. The data indicate that Pak 2 undergoes a complex pattern of phosphorylation in neutrophils and that dephosphorylation at certain sites may involve multiple protein phosphatases that exhibit distinct modes of regulation.  相似文献   

3.
Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi.  相似文献   

4.
The protein phosphatase encoded by bacteriophage lambda (lambda PP) belongs to a family of Ser/Thr phosphatases (Ser/Thr PPases) that includes the eukaryotic protein phosphatases 1 (PP1), 2A (PP2A), and 2B (calcineurin). These Ser/Thr PPases and the related purple acid phosphatases (PAPs) contain a conserved phosphoesterase sequence motif that binds a dinuclear metal center. The mechanisms of phosphoester hydrolysis by these enzymes are beginning to be unraveled. To utilize lambda PP more effectively as a model for probing the catalytic mechanism of the Ser/Thr PPases, we have determined its crystal structure to 2.15 A resolution. The overall fold resembles that of PP1 and calcineurin, including a conserved beta alpha beta alpha beta structure that comprises the phosphoesterase motif. Substrates and inhibitors probably bind in a narrow surface groove that houses the active site dinuclear Mn(II) center. The arrangement of metal ligands is similar to that in PP1, calcineurin, and PAP, and a bound sulfate ion is present in two novel coordination modes. In two of the three molecules in the crystallographic asymmetric unit, sulfate is coordinated to Mn2 in a monodentate, terminal fashion, and the two Mn(II) ions are bridged by a solvent molecule. Two additional solvent molecules are coordinated to Mn1. In the third molecule, the sulfate ion is triply coordinated to the metal center with one oxygen coordinated to both Mn(II) ions, one oxygen coordinated to Mn1, and one oxygen coordinated to Mn2. The sulfate in this coordination mode displaces the bridging ligand and one of the terminal solvent ligands. In both sulfate coordination modes, the sulfate ion is stabilized by hydrogen bonding interactions with conserved arginine residues, Arg 53 and Arg 162. The two different active site structures provide models for intermediates in phosphoester hydrolysis and suggest specific mechanistic roles for conserved residues.  相似文献   

5.
We have recently identified PP7, a novel group of plant protein Ser/Thr phosphatases, and hypothesized that PP7 may possess a calmodulin-binding site. To test this hypothesis, we assessed the effect of calmodulin on the activity of recombinant Arabidopsis thaliana PP7 and directly tested interaction between PP7 and calmodulin using surface plasmon resonance. Calmodulin exerted a moderate inhibitory effect on the phosphatase activity of PP7 with submicromolar affinity. PP7 specifically interacted with immobilized calmodulin (but not with recoverin, another EF hand Ca(2+)-binding protein) in a strictly Ca(2+)-dependent manner with nanomolar affinity. Deletion of an insert in the catalytic domain of PP7, predicted to function as a calmodulin-binding site, greatly decreased PP7 binding to calmodulin. These findings provide the first evidence for a plant protein phosphatase directly interacting with calmodulin and indicate that PP7 might be regulated by Ca(2+) levels in vivo.  相似文献   

6.
Reversible protein phosphorylation is critically important in the modulation of a wide variety of cellular functions. Several families of protein phosphatases remove phosphate groups placed on key cellular proteins by protein kinases. The complete genomic sequence of the model plant Arabidopsis permits a comprehensive survey of the phosphatases encoded by this organism. Several errors in the sequencing project gene models were found via analysis of predicted phosphatase coding sequences. Structural sequence probes from aligned and unaligned sequence models, and all-against-all BLAST searches, were used to identify 112 phosphatase catalytic subunit sequences, distributed among the serine (Ser)/threonine (Thr) phosphatases (STs) of the protein phosphatase P (PPP) family, STs of the protein phosphatase M (PPM) family (protein phosphatases 2C [PP2Cs] subfamily), protein tyrosine (Tyr) phosphatases (PTPs), low-M(r) protein Tyr phosphatases, and dual-specificity (Tyr and Ser/Thr) phosphatases (DSPs). The Arabidopsis genome contains an abundance of PP2Cs (69) and a dearth of PTPs (one). Eight sequences were identified as new protein phosphatase candidates: five dual-specificity phosphatases and three PP2Cs. We used phylogenetic analyses to infer clustering patterns reflecting sequence similarity and evolutionary ancestry. These clusters, particularly for the largely unexplored PP2C set, will be a rich source of material for plant biologists, allowing the systematic sampling of protein function by genetic and biochemical means.  相似文献   

7.
Protein phosphatases regulated by calmodulin (CaM) mediate the action of intracellular Ca2+ and modulate functions of various target proteins by dephosphorylation. In plants, however, the role of Ca2+ in the regulation of protein dephosphorylation is not well understood due to a lack of information on characteristics of CaM-regulated protein phosphatases. Screening of a cDNA library of the moss Physcomitrella patens by using 35S-labeled calmodulin as a ligand resulted in identification of a gene, PCaMPP, that encodes a protein serine/threonine phosphatase with 373 amino acids. PCaMPP had a catalytic domain with sequence similarity to type 2C protein phosphatases (PP2Cs) with six conserved metal-associating amino acid residues and also had an extra C-terminal domain. Recombinant GST fusion proteins of PCaMPP exhibited Mn2+-dependent phosphatase activity, and the activity was inhibited by pyrophosphate and 1 mm Ca2+ but not by okadaic acid, orthovanadate, or beta-glycerophosphate. Furthermore, the PCaMPP activity was increased 1.7-fold by addition of CaM at nanomolar concentrations. CaM binding assays using deletion proteins and a synthetic peptide revealed that the CaM-binding region resides within the basic amphiphilic amino acid region 324-346 in the C-terminal domain. The CaM-binding region had sequence similarity to amino acids in one of three alpha-helices in the C-terminal domain of human PP2Calpha, suggesting a novel role of the C-terminal domains for the phosphatase activity. These results provide the first evidence showing possible regulation of PP2C-related phosphatases by Ca2+/CaM in plants. Genes similar to PCaMPP were found in genomes of various higher plant species, suggesting that PCaMPP-type protein phosphatases are conserved in land plants.  相似文献   

8.
Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in eye, urinary tract, burn, and immunocompromised patients. We have cloned and characterized a serine/threonine (Ser/Thr) kinase and its cognate phosphoprotein phosphatase. By using oligonucleotides from the conserved regions of Ser/Thr kinases of mycobacteria, an 800-bp probe was used to screen P. aeruginosa PAO1 genomic library. A 20-kb cosmid clone was isolated, from which a 4.5-kb DNA with two open reading frames (ORFs) were subcloned. ORF1 was shown to encode Ser/Thr phosphatase (Stp1), which belongs to the PP2C family of phosphatases. Overlapping with the stp1 ORF, an ORF encoding Hank's type Ser/Thr kinase was identified. Both ORFs were cloned in pGEX-4T1 and expressed in Escherichia coli. The overexpressed proteins were purified by glutathione-Sepharose 4B affinity chromatography and were biochemically characterized. The Stk1 kinase is 39 kDa and undergoes autophosphorylation and can phosphorylate eukaryotic histone H1. A site-directed Stk1 (K86A) mutant was shown to be incapable of autophosphorylation. A two-dimensional phosphoamino acid analysis of Stk1 revealed strong phosphorylation at a threonine residue and weak phosphorylation at a serine residue. The Stp1 phosphatase is 27 kDa and is an Mn(2+)-, but not a Ca(2+)- or a Mg(2+)-, dependent Ser/Thr phosphatase. Its activity is inhibited by EDTA and NaF, but not by okadaic acid, and is similar to that of PP2C phosphatase.  相似文献   

9.
Protein phosphatase M family (PPM; Mg2+-dependent protein phosphatases), which specifically dephosphorylates serine/threonine residues, consists of pyruvate dehydrogenase phosphatases, SpoIIE, adenylate cyclase and protein phosphatase type 2Cs (PP2Cs). To identify Candida albicans PP2Cs, the archetype of the PPM Ser/Thr phosphatases, we thoroughly searched the public C. albicans genome database and identified seven PP2C members. One of the PP2Cs in C. albicans, designated as CaPTC8 gene, represents a new member of PP2C genes. Northern blot analysis showed that the expression of CaPTC8 was positively responsive to high osmolarity, temperature or serum-stimulated filamentous growth. Gene disruption further demonstrated that deletion of CaPTC8 gene caused the defect of hyphal formation. Sequence analysis revealed that two conserved amino acids His and Asn in the prototypical members of the PPM family were substituted by Val and Asp in the PTC8p-like proteins. In addition, posterior analysis for site-specific profile showed that seven more sites are under the selection of functional divergence between these two groups of proteins. Three-dimensional homology modeling illustrated the signatures of the two groups in the conserved catalytic region of the protein phosphatases. Hence, CaPTC8 plays a role in stress responses and is required for the yeast-hyphal transition, and the CaPTC8-related genes are evolutionarily conserved. The phylogenetic relationships of all members of the PPM family strongly support the existence of a distinct and new subfamily of the PP2C-related proteins, PP2CR.  相似文献   

10.

Background  

Protein Ser/Thr phosphatase 5 (PP5) and its Saccharomyces cerevisiae homolog protein phosphatase T1 (Ppt1p) each contain an N-terminal domain consisting of several tetratricopeptide repeats (TPRs) and a C-terminal catalytic domain that is related to the catalytic subunits of protein phosphatases 1 and 2A, and calcineurin. Analysis of yeast Ppt1p could provide important clues to the function of PP5 and its homologs, however it has not yet been characterized at the biochemical or cellular level.  相似文献   

11.
We have used a combination of highly specific protein phosphatase inhibitors and purified mammalian protein phosphatases to show that at least two separate Ser/Thr protein phosphatase activities are required for pre-mRNA splicing, but not for spliceosome assembly. Okadaic acid, tautomycin, and microcystin-LR, which are potent and specific inhibitors of PP1 and PP2A, two of the four major types of Ser/Thr-specific phosphatase catalytic subunits, block both catalytic steps of the pre-mRNA splicing mechanism in HeLa nuclear extracts. Inhibition of PP2A inhibits the second step of splicing predominantly while inhibition of both PP1 and PP2A blocks both steps, indicating a differential contribution of PP1 and PP2A activities to the two separate catalytic steps of splicing. Splicing activity is restored to toxin-inhibited extracts by the addition of highly purified mammalian PP1 or PP2A. Protein phosphatase activity was not required for efficient assembly of splicing complexes containing each of the U1, U2, U4/U6 and U5 snRNPs. The data indicate that reversible protein phosphorylation may play an important role in regulating the pre-mRNA splicing mechanism.  相似文献   

12.
13.
Protein kinase C can autophosphorylate in vitro and has also been shown to be phosphorylated in vivo. In order to investigate the factors that may determine the phosphorylation state of protein kinase C in vivo, we determined the ability of the ATP + Mg2+-dependent phosphatase and the polycation-stimulated (PCS) phosphatases to dephosphorylate protein kinase C in vitro. These studies show that all the oligomeric forms of the PCS phosphatases (PCSH1, PCSH2, PCSM and PCSL phosphatases) are effective in the dephosphorylation of protein kinase C, showing 34-82% of the activity displayed with phosphorylase a as substrate. In contrast both the catalytic subunit of the PCS phosphatase and that of the ATP+Mg2+-dependent phosphatase showed only weak activity with protein kinase C as substrate. All these phosphatases, however, were activated by protamine (Ka 14-16 micrograms/ml) through what appears to be a substrate-directed effect. The relative role of these phosphatases in the control of protein kinase C is discussed.  相似文献   

14.
We have identified a new homologue of protein phosphatase type 1 from Plasmodium falciparum, designated PfPP1, which shows 83-87% sequence identity with yeast and mammalian PP1s at the amino acid level. The PfPP1 sequence is strikingly different from all other P. falciparum Ser/Thr phosphatases cloned so far. The deduced 304 amino acid sequence revealed the signature sequence of Ser/Thr phosphatase LRGNHE, and two putative protein kinase C and five putative casein kinase II phosphorylation sites. Calyculin A, a potent inhibitor of Ser/Thr phosphatase 1 and 2A showed hyperphosphorylation of a 51kDa protein among other parasite proteins. Okadaic acid on the other hand, was without any effect suggesting that PP1 activity might predominate over PP2A activity in intra-erythrocytic P. falciparum. Complementation studies showed that PfPP1 could rescue low glycogen phenotype of Saccharomyces cerevisiae glc7 (PP1) mutant, strongly suggesting functional interaction of PfPP1 and yeast proteins involved in glycogen metabolism.  相似文献   

15.
Serine/threonine protein phosphatases are central mediators of phosphorylation-dependent signals in eukaryotes and a variety of pathogenic bacteria. Here, we report the crystal structure of the intracellular catalytic domain of Mycobacterium tuberculosis PstPpp, a membrane-anchored phosphatase in the PP2C family. Despite sharing the fold and two-metal center of human PP2Calpha, the PstPpp catalytic domain binds a third Mn(2+) in a site created by a large shift in a previously unrecognized flap subdomain adjacent to the active site. Mutations in this site selectively increased the Michaelis constant for Mn(2+) in the reaction of a noncognate, small-molecule substrate, p-nitrophenyl phosphate. The PstP/Ppp structure reveals core functional motifs that advance the framework for understanding the mechanisms of substrate recognition, catalysis, and regulation of PP2C phosphatases.  相似文献   

16.
The extracellular signal-regulated protein kinase 2 (ERK2) is the founding member of a family of mitogen-activated protein kinases (MAPKs) that are central components of signal transduction pathways for cell proliferation, stress responses, and differentiation. The MAPKs are unique among the Ser/Thr protein kinases in that they require both Thr and Tyr phosphorylation for full activation. The dual phosphorylation of Thr-183 and Tyr-185 in ERK2 is catalyzed by MAPK/ERK kinase 1 (MEK1). However, the identity and relative activity of protein phosphatases that inactivate ERK2 are less well established. In this study, we performed a kinetic analysis of ERK2 dephosphorylation by protein phosphatases using a continuous spectrophotometric enzyme-coupled assay that measures the inorganic phosphate produced in the reaction. Eleven different protein phosphatases, many previously suggested to be involved in ERK2 regulation, were compared, including tyrosine-specific phosphatases (PTP1B, CD45, and HePTP), dual specificity MAPK phosphatases (VHR, MKP3, and MKP5), and Ser/Thr protein phosphatases (PP1, PP2A, PP2B, PP2C alpha, and lambda PP). The results provide biochemical evidence that protein phosphatases display exquisite specificity in their substrate recognition and implicate HePTP, MKP3, and PP2A as ERK2 phosphatases. The fact that ERK2 inactivation could be carried out by multiple specific phosphatases shows that signals can be integrated into the pathway at the phosphatase level to determine the cellular response to external stimuli. Important insights into the roles of various protein phosphatases in ERK2 kinase signaling are obtained, and further analysis of the mechanism by which different protein phosphatases recognize and inactivate MAPKs will increase our understanding of how this kinase family is regulated.  相似文献   

17.
Protein phosphatase 2C (PP2C), an Mg(2+)-dependent enzyme that dephosphorylates serine and threonine residues, defines one of the three major families of structurally unrelated eukaryotic protein phosphatases. Members of the two other families of protein phosphatases are known to have important cellular roles, but very little is known about the biological functions of PP2C. In this report we describe a genetic investigation of a PP2C enzyme in the fission yeast Schizosaccharomyces pombe. We discovered ptc1+ (phosphatase two C) as a multicopy suppressor gene of swo1-26, a temperature-sensitive mutation of a gene encoding the heat shock protein hsp90. The ptc1+ gene product is a 40-kDa protein with approximately 24% identity to a rat PP2C protein. Purified Ptc1 has Mg(2+)-dependent casein phosphatase activity, confirming that it is a PP2C enzyme. A ptc1 deletion mutant is viable and has approximately normal levels of PP2C activity, observations consistent with the fact that ptc1+ is a member of a multigene family. Although a ptc1 deletion mutant is viable, it has a greatly reduced ability to survive brief exposure to elevated temperature. Moreover, ptc1+ mRNA levels increase 5- to 10-fold during heat shock. These data, demonstrating that Ptc1 activity is important for survival of heat shock, provide one of the first genetic clues as to the biological functions of PP2C.  相似文献   

18.
Complementary DNA encoding a novel protein phosphatase catalytic subunit has been isolated from a rabbit brain library. The deduced protein sequence is more similar to the major Ca2+-dependent/calmodulin-stimulated protein phosphatase (2B) in brain (55% identity) than to protein phosphatases 1 and 2A (38-39% identity). A putative calmodulin-binding domain is present C-terminal to the catalytic domain, which closely resembles that of the mouse brain enzyme. These findings represent the first indication that at least two distinct Ca2+-dependent/calmodulin-stimulated protein phosphatases are present in mammalian brain.  相似文献   

19.
A novel phosphoprotein inhibitor of protein type-1 phosphatase holoenzymes   总被引:8,自引:0,他引:8  
Eto M  Karginov A  Brautigan DL 《Biochemistry》1999,38(51):16952-16957
Control of protein phosphatases is now understood to depend on binding to a variety of regulatory or targeting subunits to form holoenzymes with restricted localization and substrate specificity. In addition, the catalytic subunits of both type-1 and type-2 phosphatases bind specific inhibitor proteins. Here, we report discovery of a new inhibitor protein called PHI-1 that is specific for type-1 protein phosphatase (PP1). Recombinant tagged PHI-1 was phosphorylated by protein kinase C at two sites, one a Ser and one a Thr; phosphorylation enhanced inhibitory potency 50-fold. Mutation of Thr57 to Ala gave a protein phosphorylated only on Ser, without change in inhibitory activity, indicating that phosphorylation of Thr57 was required for full activity. Immunoblotting showed that PHI-1 was expressed in most animal tissues and several cell lines, and a second larger protein called PHI-2 was present in different muscles, especially cardiac muscle. Unlike any other known inhibitor, PHI-1 inhibited the myosin- and glycogen-associated holoenzyme versions of PP1 as well as the monomeric catalytic subunit of PP1. Discovery of PHI-1 and PHI-2 opens new possibilities for regulation of PP1 via phosphorylation-dependent signaling pathways.  相似文献   

20.
Evans DR  Simon JA 《FEBS letters》2001,498(1):110-115
The potential anticancer agent fostriecin (FOS) is a potent inhibitor of the protein Ser/Thr phosphatases PP2A and PP4 and a weaker inhibitor of PP1. Random mutagenesis and automated screening in yeast identified residues in human PP2Acalpha important for inhibitory FOS binding. A C269S substitution in the predicted beta12-beta13 loop decreased the FOS sensitivity of intact cells and increased the IC(50) of PP2Acalpha by 10-fold in vitro. Changing PP2Acalpha Cys-269 to phenylalanine, the equivalent residue in PP1, and the Y267G and G270D substitutions caused a similar effect. The results provide information relevant to the design of novel protein Ser/Thr phosphatase inhibitory drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号