首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood constituents labeled with technetium-99m (99mTc) have been used in nuclear medicine procedures and drugs are capable to interfere on this labeling. Lantana camara (lantana) has medicinal properties and it has been used in folk medicine. The aim is to verify the effect of a lantana extract on the labeling of blood constituents with 99mTc. Blood of rats was incubated with extract, stannous chloride and 99mTc, as sodium pertechnetate. Plasma (P) and blood cells (BC) were isolated, also precipitated with trichloroacetic acid and soluble (SF) and insoluble fractions (IF) were separated. The % of radioactivity (%ATI) in these samples was calculated. Samples of labeled BC were washed and the %ATI maintained (%ATI-M) in the BC was determined. The results showed that lantana extract decreased significantly (p < 0.05) in the IF-P from 70.24 +/- 2.59 to 11.95 +/- 3.07. This effect was not observed in the BC and IF-BC. The BC-%ATI-M was significantly (p < 0.05) decreased in all concentrations tested when the BC was washed. This fact was not observed in the control. Substances present on the extract should have redoxi action decreasing the concentration of the stannous ion and this condition could justify the effect on the IF-P. The results about the BC-%ATI-M should indicate a possible effect on the transport of ions through the erythrocyte membrane.  相似文献   

2.
Sechium edule (chayotte) is used as food or as medication in popular medicine. The labeling of blood elements with technetium-99m (99mTc) has been altered by drugs (synthetic and natural). Some authors have reported biological effects concerning the chayotte. We have evaluated the influence of chayotte extracts (macerated and infusion) on the labeling of blood elements with 99mTc. In vitro study, blood was incubated with the extracts, (6.25, 12.5, 25, 50 and 100% v/v). In in vivo study, the animals were treated with the extracts (100% v/v), as drinking water (15 and 60 days) and samples of blood were withdrawn. The blood samples were incubated with stannous chloride and with 99mTc. Plasma (P) and blood cells (BC) were isolated, also precipitated with trichloroacetic acid and soluble (SF) and insoluble fractions (IF) separated. There was a (p < 0.05) decrease in the radioactivity in BC, IF-BC and IF-P with the infusion (100%) and a slight decrease in the uptake of 99mTc by BC and a strong decrease in the fixation in IF-P with the macerated when the extracts were administrated in vivo (15 days). In 60 days, there was a decrease in BC (98.77 to 53.53%), in IF-BC (90.36 to 21.20%) and in IF-P (77.20 to 11.01%). In vitro study no alterations on the labeling of blood elements were found, however, we have found alterations on the fixation of 99mTc in the in vivo study, probably, due to the metabolization of chayotte capable to induce the generation of active metabolites.  相似文献   

3.
It is estimated that about 2.5 million people only in the United States are affected by epilepsy. Labelled red blood cells (RBC) and plasma proteins (PP) are used for several evaluations in nuclear medicine and drugs affecting those labelings have previously been described. The aim of this study was to evaluate whether the most popular antiseizure drugs interfere with the 99mTc labeling process of RBC and PP. Heparinized blood withdrawn from Wistar rats was incubated with phenobarbital (0.2, 2, 20, 200, 2,000 microg/ml), phenytoin (0.15, 1.5, 15, 150, 1,500 microg/ml), carbamazepine (0.7, 7, 70 microg/ml), clonazepam (0.5, 5, 50, 500 microg/ml) or valproic acid (0.5, 5, 50, 500 microg/ml) for I hr. Stannous chloride (SnCl2), in two different concentrations (0.012 or 1.2 microg/ml) and 99mTc were added. Plasma and cellular fractions were isolated by centrifugation, soluble and insoluble fractions were separated by trichloroacetic acid precipitation. The percentage of radioactivity was calculated for each fraction. Statistical analysis was performed with ANOVA and Dunnet tests. The analysis of the results has shown that phenobarbital (2,000 microg/ml) and clonazepam (50 microg/ml) significantly have reduced the RBC labeling efficiency when it was used the optimal SnCl2 concentration (1.2 microg/ml) and clonazepam (5, 50 microg/ml) has significantly decreased the PP labeling efficiency with 99mTc. Phenytoin (1,500 microg/ml) has decreased the RBC labeling efficiency when the experiments were carried out with a small SnCl2 concentration (0.012 microg/ml). We can suggest that with this in vitro assay, at the therapeutic level of phenytoin, phenobarbital, carbamazepine and valproic acid will not interfere on the 99mTc labeling process of RBC. Interference is displayed at higher phenobarbital concentrations (2,000 microg/ml). However, humans do not tolerate this concentration. On the other hand, a decreased RBC and PP labeling efficiency with 99mTc may be expected for clonazepam at therapeutic levels.  相似文献   

4.
Acetaminophen (AAP), acetylsalicylic acid (ASA) and dipyrone (DIP) are antipyretic and analgesics drugs that have wide use in health sciences. Some drugs can modify the labeling of blood elements with technetium-99m (99mTc). This work has evaluated the effect of AAP, ASA and DIP on the labeling of the blood elements with 99mTc. Blood was incubated with different concentrations of the drugs before the 99mTc-labeled process. Plasma (P), blood cells (BC), insoluble (IF-P, IF-BC) and soluble (SF-P, SF-BC) fractions were separated and percentage of radioactivity (%ATI) in each fraction was determined. Data have shown that the antipyretic drugs used in this study did not significantly modify the fixation of 99mTc on the blood elements when the experiments were carried out with the doses usually used in human beings. Although the experiments were carried out with rats, it is possible to suggest that AAP, ASA or DIP should not interfere with the procedures in nuclear medicine involving the labeling of blood elements with 99mTc.  相似文献   

5.
The labeling of red blood cells with technetium-99m(99mTc) depends on a reducing agent and stannous ions, as chloride or fluoride, are widely utilized. This labeling may also be altered by drugs. Moreover, some authors have reported that the survival of Escherichia coli (E. coli) cultures decreases in presence of stannous ions. Phytic acid is present in the daily diet and we evaluated its influence on: (i) the labeling of blood elements with 99mTc and (ii) on the survival of an E. coli strain treated with stannous fluoride. Heparinized whole blood was withdrawn from Wistar rats and it was incubated with stannous chloride and with 99mTc, as sodium pertechnetate, centrifuged and plasma (P) and blood cells (BC) were isolated. Samples of P and BC were also precipitaded with trichloroacetic acid, centrifuged and soluble (SF) and insoluble fractions (IF) isolated. E. coli culture was treated with stannous fluoride in presence of phytic acid. As phytic acid altered the fixation of 99mTc on BC, on IF-P and on IF-BC and, moreover, it abolished the lethal effect of stannous fluoride on the E. coli culture, we can suggest that, probably, phytic acid would have chelating properties to the stannous ions.  相似文献   

6.
Since ancient times propolis has been employed for many human purposes because to their favourable properties. Blood constituents labeled with technetium-99m (99mTc) have been used in nuclear medicine procedures. Some authors have reported that synthetic or natural drugs can interfere with the labeling of blood constituents with 99mTc. The aim of this work was to evaluate the action of a propolis extract on the labeling of blood elements with 99mTc. Samples of whole blood of male Wistar rats were incubated in sequence with an aqueous propolis extract at different concentrations, stannous chloride and 99mTc, as sodium pertechnetate. Blood samples were centrifuged to separate plasma and blood cells, soluble and insoluble fractions of plasma and blood cells were also separated after precipitation in trichloroacetic acid solution and centrifugation. The radioactivity was counted and the percentage of incorporated radioactivity (%ATI) for each fraction was calculated. The data obtained showed that the aqueous propolis extract used decreased significantly the %ATI in plasma proteins at higher concentration studied. Results suggest that at high concentration the constituents of this extract could alter the labeling of plasma proteins competing with same binding sites of the 99mTc on the plasma proteins or acting as antioxidant compounds.  相似文献   

7.
Acetylsalicylic acid is the most widely used drug as antipyretic, analgesic, anti-inflammatory agent and for secondary prevention of thrombotic phenomena in the heart, brain and peripheral circulation. Drugs can modify the labeling of blood constituents with technetium-99m (99mTc). This work has evaluated the effect of in vivo treatment with acetylsalicylic acid on the in vitro labeling of the blood constituents with 99mTc. Wistar rats were treated with different doses (1.5, 3.0 and 6.0 mg/kg) of acetylsalicylic acid during 1 hour. At higher dose used (6.0 mg/kg) animals were treated during different period of time (0.25, 1.0 and 4.0 hours). Animals treated with physiologic saline solution were used as control. After the labeled process; plasma (P), blood cells (BC), insoluble (IF-P, IF-BC) and soluble (SF-P, SF-BC) fractions were separated. Afterwards, the percentage of radioactivity (%ATI) in each fraction was calculated. The treatment during 1 hour with acetylsalicylic acid at higher dose has significantly (p < 0.05) modified the fixation of 99mTc on blood cells. Considering the results, we suggest that acetylsalicylic acid used at therapeutic doses may interfere with the nuclear medicine procedures related to these blood constituents.  相似文献   

8.
The use of eggplant has been suggested to treat different diseases. We studied the effect of eggplant extract on the labeling of red blood cells (RBC) and plasma proteins with technetium-99m (Tc-99m) and on biodistribution of sodium pertechnetate (Tc-99m) in rats. Blood was incubated with an eggplant extract (final concentrations 3.12 to 250.00 mg/ml) for 60 min. Then, stannous chloride (SnCl2) (0.06 or 1.2 microg/ml) and Tc-99m, as sodium pertechnetate, were added. Samples of RBC and plasma (P) were separated and also precipitated and soluble (SF) and insoluble (IF) fractions were isolated. The percent of radioactivity (%ATI) in the fractions was calculated. In the biodistribution study, Wistar rats were treated with eggplant extract (300 mg/ml) for 4 weeks, in drinking water. Tc-99m was administered in the rats, after 90 min they were sacrificed and organs and blood were isolated. When 0.06 microg/ml SnCl2 was used, eggplant extract: i/ inhibited the label of RBC (97.14 +/- 2.01 to 52.21 +/- 3.97%ATI), ii/ decreased the labeling in IF-P from 38.79 +/- 11.73 to 5.49 +/- 2.65%ATI, and iii/ diminished the labeling in IF-RBC from 90.04 +/- 2.65 to 46.17 +/- 9.49%ATI. This inhibitory effect was not observed with SnCl2 1.2 microg/ml. In the biodistribution study, the %ATI: i/ increased in the liver from 2.15 +/- 0.54 to 3.11 +/- 1.29 and ii/ in the other organs the Tc-99m uptake was not modified. The uptake of Tc-99m in red blood cells protein (IF-RBC) decreased from 66.62 +/- 19.67 to 31.66 +/- 8.84%. It is possible to suggest that some components of the eggplant extract present an oxidation power able to alter the fixation of the Tc-99m on the blood elements. Moreover, as eggplant is metabolized in the liver, this fact could justify the alteration of the uptake in this organ.  相似文献   

9.
Since technetium-99m (99mTc) was introduced in medical research it has become one of the most employed radionuclides in nuclear medicine. 99mTc is ideal for routine use on the labeling of different radiopharmaceuticals due to its favorable characteristics. However, some biological effects have been described. These effects may be related to internal conversion electron and/or Auger electron emissions from 99mTc decay that present high linear energy transfer and can generate reactive oxygen species (ROS) in the medium. We evaluated in Escherichia coli K12S and Salmonella typhimurium TA102, both proficient in DNA repair, contribution of those decay emissions on the cytotoxicity induced by 99mTc, both either by generating lesions on DNA or by inducing alterations at membrane. We also studied the genotoxic and/or mutagenic potentiality of 99mTc, in Salmonella typhimurium, using the Ames test. The results showed that: i/ 99mTc is cytotoxic to the Escherichia coli K12S strains; ii/ this effect is related to the electrons (Auger and internal conversion) emissions, and iii/ the 99mTc is not mutagenic and/or genotoxic, when measured by Ames test.  相似文献   

10.
99mTc is widely thought to directly bind proteins through thiolate groups of cysteine residues, resulting in Tc-cysteinyl-protein bonds. Chemical reduction of disulfide bonds in proteins is widely used to generate thiolates with the goal of increasing 99mTc binding. This strategy is used because most proteins contain no thiolates, but many do contain disulfide bonds. In this study, we have evaluated the hypothesis that imidazole groups of histidine are also involved in direct 99mTc binding to proteins. Human gamma-globulin was used as the model protein in these studies. The immunoglobulin was used (a) without reduction or was (b) treated with stannous ions to reduce disulfide bonds thereby increasing thiolate concentration. These proteins were used to evaluate the hypothesis that imidazole as well as thiolate groups bind Tc. The proteins were evaluated by (a) using free amino acids to compete with proteins for 99mTc and (b) by chemical modification of amino acid side chains. In addition, peptides known to contain either cysteine or histidine, but not both, were also successfully directly labeled with 99mTc. These results indicate that in proteins (and peptides) imidazole-containing groups as well as thiolate-containing groups bind Tc.  相似文献   

11.
99mTc-labeled diethylenetriaminepentaacetic acid (DTPA)-coupled neogalactosyl human serum albumin (GSA) is used as an imaging agent for asialoglycoprotein receptor of the liver. However, its labeling is inconvenient because it should be incubated for 30 min at 50 degrees C. In addition, the conjugated DTPAs can cause decrease of pI and denaturation of protein. Therefore, we developed an improved agent 99mTc-neolactosyl human serum albumin (LSA) which contains a terminal galactose. LSA was synthesized by conjugating lactose to human serum albumin by the formation of a Schiff's base and successive reduction with sodium cyanoborohydride. The number of conjugated lactose molecules per LSA was 40.7 +/- 12.3. To simplify the labeling procedure, we used a direct labeling method that adopts a high affinity 99mTc binding site concept in antibody labeling. The produced LSA was reduced by beta-mercaptoethanol to generate sulfhydryl groups and purified by PD-10 size-exclusion column. The number of generated sulfhydryl groups per LSA was 21.9 +/- 3.0. Medronate and stannous chloride were added to the reduced LSA and freeze-dried. Finally, 99mTc-pertechnetate (37 MBq, 1 mL) was added to the vial and incubated for 10 min at room temperature. The labeling efficiency of 99mTc-LSA was higher than 98%, and the stability in human serum at 37 degrees C for 24 h was over 90%. Biodistribution study using balb/c mice and imaging study using SD rats showed high initial liver uptake and slow increase in the intestine due to hepatobiliary excretion after metabolism in the hepatocytes. Negligible spleen uptake was found while 99mTc-tin colloid showed significant amount of spleen uptake due to reticuloendothelial uptake. In conclusion, an improved agent, 99mTc-LSA, for imaging asialoglycoprotein receptor of the liver was successfully developed which showed a simple labeling procedure, high labeling efficiency, high stability, and high initial liver uptake.  相似文献   

12.
Technetium-99m (99mTc) has been used in nuclear medicine and in biomedical research to label molecular and cellular structures employed as radiotracers. Here, we have evaluated, on a DNA repair proficient Escherichia coli strain, the 99mTc decay inactivation and the influence of the (i) pre-treatment with metal ion chelators or of the (ii) treatment with a free radical scavenger on the protection of the cells against the lethal effect of the 99mTc. As SnCl2 is frequently used as a reducing agent in the 99mTc-labeling process, we have also studied the capability of SnCl2 to alter the biological effects induced by the 99mTc decay. As we are exposed to either chemical or physical agents in the nature, we have decided to study a possible influence of the ultraviolet solar radiation in the biological phenomena induced by the 99mTc decay. Our data point out (i) a very important role of the Auger and/or conversion electrons in the cytotoxicity induced by the 99mTc decay; (ii) SnCl2, the metal ion chelators and the free radical scavenger protect the cells against the lethal effect of the 99mTc; and (iii) near-UV does not alter the lethal effect of the 99mTc decay.  相似文献   

13.
Biodistribution and lymphoscintigraphy of cyclosporine A (CyA) and technetium-99m (99mTc) were studied using 99mTc-labeled dextran acetate (DxA) including CyA. DxA particles were prepared from dextran with acetic anhydride, and CyA was loaded into them. Lymphatic delivery of 99mTc-labeled DxA particles containing CyA was evaluated after subcutaneous injection into the foot pad of rats and compared with those of 99mTc-labeled human serum albumin (HSA). The labeling efficiency of CyA-loaded 99mTc-DxA particles was about 95% at 30 min. The labeling efficiency maintained stably above 80% for 12 h. The percent injected dose (%ID) of CyA-loaded 99mTc-DxA was similar to that of 99mTc-HSA at the inguinal lymph node after 40 min. The CyA-loaded 99mTc-DxA could be as well distributed as 99mTc-HSA through the lymph node. The DxA particles could steadily distribute the CyA as well as the 99mTc radiolabeling through the lymph node.  相似文献   

14.
A method to determine the extent of active inflammatory bowel disease using selective labelling of autologous neutrophils and monocytes by phagocytosis of a technetium-99m (99mTc) stannous oxide colloid is described. Unlike leucocyte scanning techniques using Indium-III (IIIIn), the 99mTc colloid scan uses a cheap, readily available isotope, which specifically labels phagocytes. Scan results in 20 patients with inflammatory bowel disease were compared with barium examinations and colonoscopic appearances. There was close agreement in 15 of 20 patients as to the extent of mucosal disease. In four cases the scan showed more extensive disease than was suggested by barium examination. The scan showed terminal ileal Crohn''s disease in three patients in whom the barium studies of the ileum had been reported as normal. In four patients with inactive disease and normal barium examinations no activity was seen on the scans. The 99mTc phagocyte scan is a sensitive, reliable means of determining the extent of active inflammatory bowel disease and can be used to quantify disease activity.  相似文献   

15.
Four 99mTc and three 123I labeling methods were evaluated for their suitability to label low density lipoproteins (LDL) for the purpose of scintigraphic biodistribution studies. For 99mTc these methods were: direct incorporation in LDL of 99mTcO4- using sodium dithionite (dithionite method); a method using first N,N-dimethylformamide to prepare a 99mTc-complex reacting with LDL in a subsequent step (DMF method); a technique in which 99mTcO4- is first coupled to a diamide dithiolate derivative of pentanoic acid by reduction with dithionite, followed by coupling of this ligand to LDL (N2S2 method); and a method using sodium borohydride and stannous chloride as reducing agents (borohydride method). The iodination techniques were based on oxidation of I(-)----I+, using iodine monochloride (ICl method), 1,3,4,6-tetrachloro-3,6-diphenylglycoluril (Iodogen method), and N-bromosuccinimide (NBS method) as oxidants. We studied labeling yields, modification of LDL caused by the labeling procedures using agarose-gel electrophoresis, and radiochemical stability of the labeled LDL complex upon incubation in plasma at 37 degrees C for 15 h. We used Sepharose CL6B chromatography to separate LDL from other plasma proteins. We also examined whether LDL isolated from frozen plasma (Pool-LDL) gave results similar to LDL obtained from freshly prepared plasma (Fresh-LDL). Pool-LDL radiolabeled by the dithionite, DMF, NBS, and Iodogen methods lost its label upon incubation with plasma. This also happened with Fresh-LDL when the DMF, NBS and Iodogen methods were used. Upon agarose-gel electrophoresis, no modification of LDL was observed with all methods when the radionuclide/LDL ratio was kept low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The cell-mediated resistance of human leucocytes to Trypanosoma dionisii, a bat parasite related to T. cruzi, was investigated. Human peripheral blood neutrophils and monocytes were cytotoxic to T. dionisii as assessed by electron microscopy and by induction of 99mTc release from trypanosomes pre-labelled with [99mTc] pertechnetate. The enhancement of cytotoxicity by specific antiserum varied considerably from one individual to another. Neither blood lymphocytes nor blood eosinophils induced 99mTc release from T. dionisii. The trypanosomes were readily phagocytosed by neutrophils and monocytes even in the absence of added antiserum but the rate was enchanced when antiserum was present. Eosinophils also phagocytosed T. dionisii but only in the presence of antiserum. Investigation by electron microscopy revealed that T. dionisii is rapidly destroyed in the phagocytic vacuole of enutrophils and monocytes and by eosinophils. Phagocytosis, ultrastructural damage and induction of 99mTc release occurred more rapidly in neutrophils than in monocytes.  相似文献   

17.
A new labeling approach for incorporating bioactive peptides into a technetium-99m coordination complex is described. This method exploits the chemical properties of the novel metal-nitrido fragment [99mTc(N)(PXP)]2+, composed of a terminal Tc[triple bond] N multiple bond bound to an ancillary diphosphine ligand (PXP). It will be shown that this basic, molecular building block easily forms in solution as the dichloride derivative [99mTc(N)(PXP)Cl2], and that this latter complex selectively reacts with monoanionic and dianionic, bidentate ligands (YZ) having soft, pi-donor coordinating atoms to afford asymmetrical nitrido heterocomplexes of the type [99mTc(N)(PXP)(YZ)]0/+ without removal of the basic motif [99mTc(N)(PXP)]2+. The reactions of the amino acid cysteine was studied in detail. It was found that cysteine readily coordinates to the metal fragment [99mTc(N)(PXP)]2+ either through the [NH2, S-] pair of donor atoms or, alternatively, through the [O-, S-] pair, to yield the corresponding asymmetrical complexes in very high specific activity. Thus, these results were conveniently employed to devise a new, efficient procedure for labeling short peptide sequences having a terminal cysteine group available for coordination to the [99mTc(N)(PXP)]2+ fragment. Examples of the application of this novel approach to the labeling of the short peptide ligand H-Arg-Gly-Asp-Cys-OH (H(2)1) and of the peptidomimetic derivative H-Cys-Val-2-Nal-Met-OH (H2) will be discussed.  相似文献   

18.
Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans.   总被引:7,自引:0,他引:7  
Oxidation of stannous chloride by Thiobacillus ferrooxidans was studied manometrically. At low stannous ion concentrations, initial oxidation rate was proportional to concentration. Optimum pH for oxidation was 2.3 optimum temperature was 37-40 degrees C. Spectrophotometry showed reduction of cytochromes in suspensions of whole cells on addition of ferrous, stannous, or cuprous salts. Cytochrome c reductase activity in cell-free extracts was assayed with ferrous, stannous, or cuprous ions as electron donors. It appears unlikely that an essential non-biological reaction, the reduction of ferric ions by stannous or cuprous ions, is involved. Growth of T. ferrooxidans was not obtained with either stannous chloride or stannous sulphate as sole energy source.  相似文献   

19.
As a continuation of our interest in novel 99mTc chelating systems, several pyridine-containing HYNIC (6-hydrazinonicotinamide) derivatives (L1-L5) have been synthesized and characterized by NMR (1H and 13C) and LC-MS. 99mTc complexes of L1-L5 were prepared by the reaction of the HYNIC derivative with 99mTcO4- in the presence of excess tricine and stannous chloride. Results from this study show that the attachment site of the linker is critical for the formation of macrocyclic 99mTc complexes. For example, the pyridine-N in L3 is not able to bond to the Tc, because the lysine linker is attached to the 4-position. When the linker is at the 2-position, L1 forms the macrocyclic complex [99mTc(L1)(tricine)], but the radiochemical purity is relatively low. If the linker is attached to the 3-position of the pyridine ring, the HYNIC derivatives form macrocyclic complexes [99mTc(L)(tricine)] (L2, L4, and L5) in high yield (>95%). The HPLC data suggest that the macrocyclic complex [(99m)Tc(L2)(tricine)] exists in solution as four isomers: two diastereomers and two conformational isomers. Diastereomers are due to a combination of the chirality of the lysine linker and of the Tc chelate. Replacing lysine with a pentamethylenediamine linker results in the macrocyclic complex [99mTc(L4)(tricine)] with two conformational isomers, which interconvert rapidly at room temperature. Changing the linker from pentamethylenediamine to hexamethylenediamine did not eliminate the minor isomer; but the percentage of the minor isomer was reduced from approximately 10% for [99mTc(L4)(tricine)] to only 6% for [99mTc(L5)(tricine)]. The linker length is an important parameter to minimize the minor isomer. LC-MS data of complexes [99mTc(L)(tricine)] (L2, L4, and L5) are completely consistent with their proposed compositions. On the basis of these data, it is concluded that pyridine-containing HYNIC derivatives have the potential as bifunctional chelators for 99mTc-labeling of small biomolecules if the linker is attached to the 3-position of the pyridine ring.  相似文献   

20.
In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3'-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号