首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The high mobility group proteins 1 and 2 (HMG1/2) and histone B4 are major components of chromatin within the nuclei assembled during the incubation of Xenopus sperm chromatin in Xenopus egg extract. To investigate their potential structural and functional roles, we have cloned and expressed Xenopus HMG1 and histone B4. Purified histone B4 and HMG1 form stable complexes with nucleosomes including Xenopus 5S DNA. Both proteins associate with linker DNA and stabilize it against digestion with micrococcal nuclease, in a similar manner to histone H1. However, neither histone B4 nor HMG1 influence the DNase I or hydroxyl radical digestion of DNA within the nucleosome core. We suggest that HMG1/2 and histone B4 have a shared structural role in organizing linker DNA in the nucleosome.  相似文献   

2.
3.
The lamin B receptor (LBR) is an integral protein of inner nuclear membrane whose nucleoplasmic amino-terminal domain contributes to the attachment of the membrane to chromatin. Here we analyzed the interactions of a recombinant GST protein containing the amino-terminal domain of the protein with in vitro reconstituted nucleosomes and short DNA fragments. Data show that the LBR amino-terminal domain (AT) binds linker DNA but does not interact with the nucleosome core. Titration and competition studies revealed that the interaction between LBR AT and DNA is saturable, of high affinity (K(D) approximately 4 nM), independent of DNA sequence, and enhanced by DNA curvature and supercoiling. In this respect, LBR amino-terminal domain binding to nucleosomes is similar to that of histone H1 and non histone proteins HMG1/2 which both bind preferentially to linker DNA and present a significant affinity for DNA secondary structures.  相似文献   

4.
There is evidence that HMGB proteins facilitate, while linker histones inhibit chromatin remodelling, respectively. We have examined the effects of HMG-D and histone H1/H5 on accessibility of nucleosomal DNA. Using the 601.2 nucleosome positioning sequence designed by Widom and colleagues we assembled nucleosomes in vitro and probed DNA accessibility with restriction enzymes in the presence or absence of HMG-D and histone H1/H5. For HMG-D our results show increased digestion at two spatially adjacent sites, the dyad and one terminus of nucleosomal DNA. Elsewhere varying degrees of protection from digestion were observed. The C-terminal acidic tail of HMG-D is essential for this pattern of accessibility. Neither the HMG domain by itself nor in combination with the adjacent basic region is sufficient. Histone H1/H5 binding produces two sites of increased digestion on opposite faces of the nucleosome and decreased digestion at all other sites. Our results provide the first evidence of local changes in the accessibility of nucleosomal DNA upon separate interaction with two linker binding proteins.  相似文献   

5.
The interaction between calf thymus HMG14 and rat liver chromatin components has been studied via reconstitution and chemical cross-linking. Selective labeling of HMG14 with photoactivable reversible heterobifunctional reagents has allowed a clear identification of the histones interacting with it (histones H2A, H2B and H1). These results are not dependent on whether the chromatin samples used were bulk chromatin, mononucleosomes, or core particles (for H2A and H2B). In addition to histone proteins, DNA also seems to be involved in HMG14 attachment to nucleosome.  相似文献   

6.
Loss of linker histone H1 in cellular senescence   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

7.
Identification of the core-histone-binding domains of HMG1 and HMG2   总被引:5,自引:0,他引:5  
High mobility group (HMG) nonhistone chromosomal proteins are a group of abundant, conservative and highly charged nuclear proteins whose physiological role in chromatin is still unknown. To gain insight into the interactions of HMG1 and HMG2 with the fundamental components of chromatin we have introduced the methodology of photochemical crosslinking. This technique has allowed us to study the interaction of HMG1 and HMG2 with the core histones, in the form of an H2A X H2B dimer and an (H3 X H4)2 tetramer, for an effective time of crosslinking of less than 1 ms and under very mild conditions. This is achieved by using flash photolysis. With this procedure we found that both HMG1 and HMG2 interact with H2A X H2B and also with (H3 X H4)2. In the second case, they seem to do this through histone H3. To obtain more information about the interactions, we split HMG1 and HMG2 into their peptides using staphylococcal proteinase. The peptides obtained, which reflect the domain distribution of these proteins, were then used along with the histone oligomers to elucidate their interactions by means of photochemical crosslinking. Results obtained indicate that the domain of HMG1 and HMG2 involved in the interaction with H2A X H2B histones is the highly acidic C-terminal, whereas the N-terminal is involved in the interactions with (H3 X H4)2 histones. In all cases, the interactions found appear appreciably strong. Along with other data published in the literature, these proteins appear to have at least one binding site per domain for the chromatin components.  相似文献   

8.
Two groups of plant chromatin-associated high mobility group (HMG) proteins, namely the HMGA family, typically containing four A/T-hook DNA-binding motifs, and the HMGB family, containing a single HMG-box DNA-binding domain, have been identified. We have examined the interaction of recombinant maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA in the presence of H1 differed from that observed in the absence of H1. HMGA and the HMGB proteins bound H1-containing nucleosome particles with similar affinity. The plant HMG proteins could also bind nucleosomes that were briefly treated with trypsin (removing the N-terminal domains of the core histones), suggesting that the histone N-termini are dispensable for HMG protein binding. In the presence of untreated nucleosomes and trypsinised nucleosomes, HMGB1 could be chemically crosslinked with a core histone, which indicates that the trypsin-resistant part of the histones within the nucleosome is the main interaction partner of HMGB1 rather than the histone N-termini. In conclusion, these results indicate that specific nucleosome binding of the plant HMGB proteins requires simultaneous DNA and histone contacts.  相似文献   

9.
Mononucleosomes were released from both isolated mammalian (hog thyroid) and protozoan (Tetrahymena) nuclei by the bleomycin-induced DNA-strand breaking reaction. Trout sperm nuclei, on the other hand, were protected from the bleomycin-mediated DNA degradation. The mononucleosomes released from the bleomycin-treated nuclei contained the core histones H2A, H2B, H3, and H4; while HMG1 and HMG2 proteins, in addition to the core histones, were detected in the mononucleosomes obtained by micrococcal nuclease digestion of nuclei. HMGs, but not H1 histone, were dissociated into the supernatant by cleavage of chromatin DNA with bleomycin, whereas both HMGs and H1 were found in that fraction by digestion of nuclei with micrococcal nuclease. HMG1 and HMG2 were exclusively dissociated from chromatin with 1 mM bleomycin under the solvent condition where the DNA strand-breaking activity of the drug is repressed. These observations suggest the possibility that bleomycin preferentially binds to linker DNA regions not occupied by H1 histone in chromatin and exclusively dissociates HMG proteins and breaks the DNA strand. The results of the effects on bleomycin-induced DNA cleavage of nuclei of various drugs including polyamines, chelating agents, intercalating antibiotics such as mitomycin C or adriamycin, and radical scavengers are also presented.  相似文献   

10.
Among the more abundant non-histone proteins is the high mobility group (HMG), with an unknown role in chromatin. We have investigated, by chemical cross-linking, the interaction of the protein HMG 1 with the histone dimer H2A X H2B and the histone tetramer (H3 X H4)2 in free solution. Cross-linking with dimethyl suberimidate, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and the cleavable cross-linker dimethyl-3,3'-dithiobispropionimidate, by two-dimensional electrophoresis reveals the existence of an interaction between HMG 1 and the histone dimer, and also between HMG 1 and the histone tetramer. In the case of the H2A X H2B dimer, the analysis of the patterns of the cross-linking products shows the presence of a trimer, (H2A X H2B) X HMG 1, and of another oligomer of higher molecular weight which also contains H2A X H2B and HMG 1. Non-histone HMG 1 has been found to interact with (H3 X H4)2, both by cross-linking kinetics and also by gel permeation chromatography, displaying a stoichiometry of one HMG 1/histone tetramer. The results have been interpreted as indicating the existence of an interaction between HMG 1 and both oligomers through two different binding sites.  相似文献   

11.
12.
The core histone tail domains are key regulators of eukaryotic chromatin structure and function and alterations in the tail-directed folding of chromatin fibers and higher order structures are the probable outcome of much of the post-translational modifications occurring in these domains. The functions of the tail domains are likely to involve complex intra- and inter-nucleosomal histone-DNA interactions, yet little is known about either the structures or interactions of these domains. Here we introduce a method for examining inter-nucleosome interactions of the tail domains in a model dinucleosome and determine the propensity of each of the four N-terminal tail domains to mediate such interactions in this system. Using a strong nucleosome "positioning" sequence, we reconstituted a nucleosome containing a single histone site specifically modified with a photoinducible cross-linker within the histone tail domain, and a second nucleosome containing a radiolabeled DNA template. These two nucleosomes were then ligated together and cross-linking induced by brief UV irradiation under various solution conditions. After cross-linking, the two templates were again separated so that cross-linking representing inter-nucleosomal histone-DNA interactions could be unambiguously distinguished from intra-nucleosomal cross-links. Our results show that the N-terminal tails of H2A and H2B, but not of H3 and H4, make internucleosomal histone-DNA interactions within the dinucleosome. The relative extent of intra- to inter-nucleosome interactions was not strongly dependent on ionic strength. Additionally, we find that binding of a linker histone to the dinucleosome increased the association of the H3 and H4 tails with the linker DNA region.  相似文献   

13.
H1 and HMGB1 bind to linker DNA in chromatin, in the vicinity of the nucleosome dyad. They appear to have opposing effects on the nucleosome, H1 stabilising it by "sealing" two turns of DNA around the octamer, and HMGB1 destabilising it, probably by bending the adjacent DNA. Their presence in chromatin might be mutually exclusive. Displacement/replacement of one by the other as a result of their highly dynamic binding in vivo might, in principle, involve interactions between them. Chemical cross-linking and gel-filtration show that a 1:1 linker histone/HMGB1 complex is formed, which persists at physiological ionic strength, and that complex formation requires the acidic tail of HMGB1. NMR spectroscopy shows that the linker histone binds, predominantly through its basic C-terminal domain, to the acidic tail of HMGB1, thereby disrupting the interaction of the tail with the DNA-binding faces of the HMG boxes. A potential consequence of this interaction is enhanced DNA binding by HMGB1, and concomitantly lowered affinity of H1 for DNA. In a chromatin context, this might facilitate displacement of H1 by HMGB1.  相似文献   

14.
High mobility group protein B1 (HMGB1) binds to the internucleosomal linker DNA in chromatin and abuts the nucleosome. Bending and untwisting of the linker DNA results in transmission of strain to the nucleosome core, disrupting histone/DNA contacts. An interaction between H3 and HMGB1 has been reported. Here we confirm and characterize the interaction of HMGB1 with H3, which lies close to the DNA entry/exit points around the nucleosome dyad, and may be responsible for positioning of HMGB1 on the linker DNA. We show that the interaction is between the N-terminal unstructured tail of H3 and the C-terminal unstructured acidic tail of HMGB1, which are presumably displaced from DNA and the HMG boxes, respectively, in the HMGB1-nucleosome complex. We have characterized the interaction by nuclear magnetic resonance spectroscopy and show that it is extensive for both peptides, and appears not to result in the acquisition of significant secondary structure by either partner.  相似文献   

15.
To investigate the relationship between chromatin dynamics and nucleotide excision repair (NER), we have examined the effect of chromatin structure on the formation of two major classes of UV-induced DNA lesions in reconstituted dinucleosomes. Furthermore, we have developed a model chromatin-NER system consisting of purified human NER factors and dinucleosome substrates that contain pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) either at the center of the nucleosome or in the linker DNA. We have found that the two classes of UV-induced DNA lesions are formed efficiently at every location on dinucleosomes in a manner similar to that of naked DNA, even in the presence of histone H1. On the other hand, excision of 6-4PPs is strongly inhibited by dinucleosome assembly, even within the linker DNA region. These results provide direct evidence that the human NER machinery requires a space greater than the size of the linker DNA to excise UV lesions efficiently. Interestingly, NER dual incision in dinucleosomes is facilitated by recombinant ACF, an ATP-dependent chromatin remodeling factor. Our results indicate that there is a functional connection between chromatin remodeling and the initiation step of NER.  相似文献   

16.
HMG-D is an abundant chromosomal protein associated with condensed chromatin during the first nuclear cleavage cycles of the developing Drosophila embryo. We previously suggested that HMG-D might substitute for the linker histone H1 in the preblastoderm embryo and that this substitution might result in the characteristic less compacted chromatin. We have now studied the association of HMG-D with chromatin using a cell-free system for chromatin reconstitution derived from Drosophila embryos. Association of HMG-D with chromatin, like that of histone H1, increases the nucleosome spacing indicative of binding to the linker DNA between nucleosomes. HMG-D interacts with DNA during the early phases of nucleosome assembly but is gradually displaced as chromatin matures. By contrast, purified chromatin can be loaded with stoichiometric amounts of HMG-D, and this can be displaced upon addition of histone H1. A direct physical interaction between HMG-D and histone H1 was observed in a Far Western analysis. The competitive nature of this interaction is reminiscent of the apparent replacement of HMG-D by H1 during mid-blastula transition. These data are consistent with the hypothesis that HMG-D functions as a specialized linker protein prior to appearance of histone H1.  相似文献   

17.
We previously reported that HMGB1, which originally binds to chromatin in a manner competitive with linker histone H1 to modulate chromatin structure, enhances both intra-molecular and inter-molecular ligations. In this paper, we found that histone H1 differentially enhances ligation reaction of DNA double-strand breaks (DSB). Histone H1 stimulated exclusively inter-molecular ligation reaction of DSB with DNA ligase IIIbeta and IV, whereas HMGB1 enhanced mainly intra-molecular ligation reaction. Electron microscopy of direct DNA-protein interaction without chemical cross-linking visualized that HMGB1 bends and loops linear DNA to form compact DNA structure and that histone H1 is capable of assembling DNA in tandem arrangement with occasional branches. These results suggest that differences in the enhancement of DNA ligation reaction are due to those in alteration of DNA configuration induced by these two linker proteins. HMGB1 and histone H1 may function in non-homologous end-joining of DSB repair and V(D)J recombination in different manners.  相似文献   

18.
19.
20.
BACKGROUND: Linker histones constitute a family of lysine-rich proteins associated with nucleosome core particles and linker DNA in eukaryotic chromatin. In permeabilized cells, they can be extracted from nuclei by using salt concentration in the range of 0.3 to 0.7 M. Although other nuclear proteins are also extracted at 0.7 M salt, the remaining nucleus represents a template that is relatively intact. METHODS: A cytochemical method was used to study the affinity of reconstituted linker histones for chromatin in situ in cultured human fibroblasts. We also investigated their ability to condense chromatin by using DNA-specific osmium ammine staining for electron microscopy. RESULTS: Permeabilized and H1-depleted fibroblast nuclei were suitable for the study of linker histone-chromatin interactions after reconstitution with purified linker histone subfractions. Our results showed that exogenous linker histones bind to chromatin with lower affinity than the native ones. We detected no significant differences between the main H1 and H1 degrees histone fractions with respect to their affinity for chromatin or in their ability to condense chromatin. CONCLUSIONS: Linker histone interactions with chromatin are controlled also by mechanisms independent of linker histone subtype composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号