首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently established Epstein-Barr virus (EBV)-positive Burkitt's lymphoma (BL) cell lines, carrying chromosomal translocations indicative of their malignant origin, have been monitored for their degree of in vitro progression towards a more 'lymphoblastoid' cell surface phenotype and growth pattern, and for their expression of three EBV latent gene products which are constitutively present in all virus-transformed normal lymphoblastoid cell lines (LCLs). BL cell lines which stably retained the original tumour biopsy phenotype on serial passage were all positive for the nuclear antigen EBNA 1 but did not express detectable amounts of two other 'transforming' proteins, EBNA 2 and the latent membrane protein (LMP). This novel pattern of EBV gene expression was also observed on direct analysis of BL biopsy tissue. All three viral proteins became detectable, however, in BL cell lines which had progressed towards a more LCL-like phenotype in vitro. This work establishes a link between B cell phenotype and the accompanying pattern of EBV latent gene expression, and identifies a novel type of EBV:cell interaction which may be unique to BL cells.  相似文献   

3.
4.
5.
6.
Certain newly established Epstein-Barr virus-containing Burkitt's lymphoma cell lines do not express the cytotoxic T-lymphocyte-detected membrane antigen (LYDMA) through which EBV infection is normally controlled by the host. When the EB virus recovered from these BL lines was used to transform peripheral blood lymphocytes from seronegative donors, the lymphoblastoid cell lines (LCLs) that arose were all LYDMA positive. This indicates that the LYDMA-negative nature of the BLs is not the result of a mutation in the resident viral genome but is rather a specific adaptation in those cells, perhaps permitting evasion of the host immune surveillance in tumour development. A comparison of the EBV gene expression in six LYDMA-negative and two LYDMA-positive BL lines and in their corresponding LCLs revealed that several of the BL lines did not express all of the viral gene products classically associated with latent transformation by EBV. Four out of eight cell lines showed restricted expression of the latent membrane protein (LMP) and/or the EB nuclear antigen, EBNA 2. A new level of EBV gene regulation therefore appears to be operating in some of the BL cell lines. The patterns of expression of EBV genes in the cell lines did not show any correlation with the known susceptibility of the lines to T cell killing.  相似文献   

7.
8.
9.
To evaluate the role of Epstein-Barr Virus (EBV) nuclear antigen 3A (EBNA3A) in the continuous proliferation of EBV-infected primary B lymphocytes as lymphoblastoid cell lines (LCLs), we derived LCLs that are infected with a recombinant EBV genome that expresses EBNA3A fused to a 4-hydroxy-tamoxifen (4HT)-dependent mutant estrogen receptor hormone binding domain (EBNA3AHT). The LCLs grew similarly to wild-type LCLs in medium with 4HT despite a reduced level of EBNA3AHT fusion protein expression. In the absence of 4HT, EBNA3AHT moved from the nucleus to the cytoplasm and was degraded. EBNA3AHT-infected LCLs were unable to grow in medium without 4HT. The precise time to growth arrest varied inversely with cell density. Continued maintenance in medium without 4HT resulted in cell death, whereas readdition of 4HT restored cell growth. Expression of other EBNAs and LMP1, of CD23, and of c-myc was unaffected by EBNA3A inactivation. Wild-type EBNA3A expression from an oriP plasmid transfected into the LCLs protected the EBNA3AHT-infected LCLs from growth arrest and death in medium without 4HT, whereas EBNA3B or EBNA3C expression was unable to protect the LCLs from growth arrest and death. These experiments indicate that EBNA3A has a unique and critical role for the maintenance of LCL growth and ultimately survival. The EBNA3AHT-infected LCLs are also useful for genetic and biochemical analyses of the role of EBNA3A domains in LCL growth.  相似文献   

10.
The LCR of EBV makes Burkitt's lymphoma endemic   总被引:2,自引:0,他引:2  
  相似文献   

11.
We have determined the localization of c-myc and the immunoglobulin kappa light chain genes on the 8q+/2p- chromosomes of the three Burkitt lymphoma lines BL21, LY66 and LY91 with t(2;8) translocation by in situ hybridization. BL21 is characterized by a complex translocation in which a piece of chromosome 9 appears to be located between the fragments of chromosome 8 and 2 on the 8q+ chromosome. Our data indicate that in all three cell lines the c-myc gene is located on the 8q+ chromosome proximal to the breakpoint in band 8q24. In all cell lines examined the cluster of kappa variable genes has remained on the 2p- chromosome. In LY91 cells the major part of the joining region remained on 2p-, while the joining region has moved to 8q+ in the cell lines BL21 and LY66. In all three cell lines the constant kappa light chain gene was found on the 8q+ chromosome. The fact that an essentially identical pattern was found in the cell line BL21, with the complex translocation, suggests that the insertion of the piece of chromosome 9 into the 8q+ chromosome might be a secondary event. Our present data fit into the concept that in all Burkitt lymphoma lines investigated so far, including cases with t(8;14) and the variant translocations t(2;8) and t(8;22), the c-myc gene becomes situated at the 5' side of an immunoglobulin constant gene. This may have implications for the generation of somatic mutations in the coding and non-coding part of the c-myc gene.  相似文献   

12.
13.
14.
A set of B-cell activation molecules, including the Epstein-Barr virus (EBV) receptor CR2 (CD21) and the B-cell activation antigen CD23 (Blast2/Fc epsilon RII), is turned on by infecting EBV-negative B-lymphoma cell lines with immortalizing strains of the viruslike B95-8 (BL/B95 cells). This up regulation may represent one of the mechanisms involved in EBV-mediated B-cell immortalization. The P3HR1 nonimmortalizing strain of the virus, which is deleted for the entire Epstein-Barr nuclear antigen 2 (EBNA2) protein open reading frame, is incapable of inducing the expression of CR2 and CD23, suggesting a crucial role for EBNA2 in the activation of these molecules. In addition, lymphoma cells containing the P3HR1 genome (BL/P3HR1 cells) do not express the viral latent membrane protein (LMP), which is regularly expressed in cells infected with immortalizing viral strains. Using electroporation, we have transfected the EBNA2 gene cloned in an episomal vector into BL/P3HR1 cells and have obtained cell clones that stably express the EBNA2 protein. In these clones, EBNA2 expression was associated with an increased amount of CR2 and CD23 steady-state RNAs. Of the three species of CD23 mRNAs described, the Fc epsilon RIIa species was preferentially expressed in these EBNA2-expressing clones. An increased cell surface expression of CR2 but not of CD23 was observed, and the soluble form of CD23 molecule (SCD23) was released. We were, however, not able to detect any expression of LMP in these cell clones. These data demonstrate that EBNA2 gene is able to complement P3HR1 virus latent functions to induce the activation of CR2 and CD23 expression, and they emphasize the role of EBNA2 protein in the modulation of cellular gene implicated in B-cell proliferation and hence in EBV-mediated B-cell immortalization. Nevertheless, EBNA2 expression in BL/P3HR1 cells is not able to restore the level of CR2 and CD23 expression observed in BL/B95 cells, suggesting that other cellular or viral proteins may also have an important role in the activation of these molecules: the viral LMP seems to be a good candidate.  相似文献   

15.
The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes.  相似文献   

16.
Epstein-Barr virus (EBV) infection is associated with the development of specific types of lymphoma and some epithelial cancers. EBV infection of resting B-lymphocytes in vitro drives them to proliferate as lymphoblastoid cell lines (LCLs) and serves as a model for studying EBV lymphomagenesis. EBV nuclear antigen 3C (EBNA3C) is one of the genes required for LCL growth and previous work has suggested that suppression of the CDKN2A encoded tumor suppressor p16INK4A and possibly p14ARF is central to EBNA3C’s role in this growth transformation. To directly assess whether loss of p16 and/or p14 was sufficient to explain EBNA3C growth effects, we used CRISPR/Cas9 to disrupt specific CDKN2A exons in EBV transformed LCLs. Disruption of p16 specific exon 1α and the p16/p14 shared exon 2 were each sufficient to restore growth in the absence of EBNA3C. Using EBNA3C conditional LCLs knocked out for either exon 1α or 2, we identified EBNA3C induced and repressed genes. By trans-complementing with EBNA3C mutants, we determined specific genes that require EBNA3C interaction with RBPJ or CtBP for their regulation. Unexpectedly, interaction with the CtBP repressor was required not only for repression, but also for EBNA3C induction of many host genes. Contrary to previously proposed models, we found that EBNA3C does not recruit CtBP to the promoters of these genes. Instead, our results suggest that CtBP is bound to these promoters in the absence of EBNA3C and that EBNA3C interaction with CtBP interferes with the repressive function of CtBP, leading to EBNA3C mediated upregulation.  相似文献   

17.
18.
Kelly G  Bell A  Rickinson A 《Nature medicine》2002,8(10):1098-1104
Epstein-Barr virus (EBV) is etiologically linked to endemic Burkitt lymphoma (BL), but its contribution to lymphomagenesis, versus that of the chromosomal translocation leading to c-myc gene deregulation, remains unclear. The virus's growth-transforming (Latency III) program of gene expression is extinguished in tumor cells, and only a single viral protein, the EBV nuclear antigen (EBNA)1, is expressed via the alternative Latency I program. It is not known if BL arises from a B-cell subset in which EBV naturally adopts a Latency I infection or if a clone with limited antigen expression has been selected from an EBV-transformed Latency III progenitor pool. Here we identify a subset of BL tumors in which the Latency III-associated EBNA promoter Wp is active and most EBNAs are expressed, but where a gene deletion has specifically abrogated the expression of EBNA2. This implies that BL can be selected from a Latency III progenitor and that the principal selection pressure is for downregulation of the c-Myc antagonist EBNA2.  相似文献   

19.
Epstein-Barr virus (EBV)-negative Burkitt's lymphoma (BL) cell lines have been converted to EBV genome positivity by in vitro infection with the transforming EBV strain B95.8 and with the nontransforming mutant strain P3HR1, which has a deletion in the gene encoding the nuclear antigen EBNA2. These B95.8- and P3HR1-converted lines have been compared for their patterns of expression of EBV latent genes (i.e., those viral genes constitutively expressed in all EBV-transformed lines of normal B-cell origin) and for their recognition by EBV-specific cytotoxic T lymphocytes (CTLs), in an effort to identify which latent gene products provide target antigens for the T-cell response. B95.8-converted lines on several different EBV-negative BL-cell backgrounds all showed detectable expression of the nuclear antigens EBNA1, EBNA2, and EBNA3 and of the latent membrane protein (LMP); such converts were also clearly recognized by EBV-specific CTL preparations with restriction through selected human leukocyte antigen (HLA) class I antigens on the target cell surface. The corresponding P3HR1-converted lines (lacking an EBNA2 gene) expressed EBNA1 and EBNA3 but, surprisingly, showed no detectable LMP; furthermore, these converts were not recognized by EBV-specific CTLs. Such differences in T-cell recognition were not due to any differences in expression of the relevant HLA-restricting determinants between the two types of convert, as shown by binding of specific monoclonal antibodies and by the susceptibility of both B95.8 and P3HR1 converts to allospecific CTLs directed against these same HLA molecules. The results suggest that in the normal infectious cycle, EBNA2 may be required for subsequent expression of LMP and that both EBNA2 and LMP (but not EBNA1 or EBNA3) may provide target antigens for the EBV-specific T-cell response.  相似文献   

20.
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号