首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat liberation in the brain was utilized as a direct signature of functional activation. We hypothesize that both temporal and spatial uncoupling between local cerebral blood flow (lCBF) and metabolic temperature components can be explored through the imaging of brain thermal gradients evoked by functional stimulation.

Surface cortical infrared (IR) images were obtained from 34 patients undergoing surgery for brain lesions under baseline conditions following peripheral nerve stimulation and, in some patients, during active behavioral tasks such as finger apposition and repetitive hand movements. An IR camera (0.02 °C sensitivity, 3–5 μm wavelength) was used to image local thermal gradients across the cerebral cortex by passively detecting IR emission.

Neural activation elicited reproducible temperature changes (0.04–0.09 °C) within the primary somatosensory cortex during median nerve stimulation and in the sensorimotor cortex during repetitive hand movements and finger tapping. The initial temperature responses were detected as early as 100–200 ms, the peak IR response occurred 5–7 s after stimulus onset.

Models of the relationship between evoked thermal gradients, lCBF and metabolic heat are proposed. Since the latencies of local metabolic and lCBF responses to stimulation vary by more than an order of magnitude, we are able to separate vascular-dependent and metabolic-dependent temperature components and thus create two discrete brain images, each reflecting distinct physiological mechanisms of functional activation. The resultant temperature profile reflects the balance between metabolism and lCBF, and therefore the degree of their functional uncoupling for the exposed and (possibly) for the intact normal human brain.  相似文献   


2.
We used optical imaging of intrinsic cortical signals, elicited by whisker stimulation, to define areas of activation in primary sensory cortex of normal hamsters and hamsters subjected to neonatal follicle ablation at postnatal day seven (P7). Follicle ablations were unilateral, and spared either C-row whiskers or the second whisker arc. This study was done to determine if the intrinsic cortical connectivity pattern of the barrel cortex, established during the critical period, affects the process of representational plasticity that follows whisker follicle ablation. Additionally, we tested the ability to monitor such changes in individual cortical whisker representations using intrinsic signal imaging. Stimulation of a single whisker yielded peak activation of a barrel-sized patch in the somatotopically appropriate location in normal cortex. In both row and arc-spared animals, functional representations corresponding to spared follicles were significantly stronger and more oblong than normal. The pattern of activation differed in the row-sparing and arc-sparing groups, in that the expansion was preferentially into deprived, not spared areas. Single whisker stimulation in row-spared cases preferentially activated the corresponding barrel arc, while stimulation of one whisker in arc-spared cases produced elongated activation down the barrel row. Since whisker deflection normally has a net inhibitory effect on neighboring barrels, our data suggest that intracortical inhibition fails to develop normally in deprived cortical columns. Because thalamocortical projections are not affected by follicle ablation after P7, we suggest that the effects we observed are largely cortical, not thalamocortical.  相似文献   

3.
Direct electrical stimulation of the cerebral cortex was used to determine the changes of cortical carbohydrate and oxidative metabolism and of vascular reactivity during haemorrhagic shock. The results were as follows. 1. Electrical stimulation of the brain cortex applied in the control period led to a marked vasodilation and NAD reduction that was preceded in part of the experiments by a transient NADH oxidation. It is suggested that the increase in cortical NADH fluorescence observed during direct stimulation is due to the fact that the rate of cytoplasmic NADH production exceeded the rate of mitochondrial NADH oxidation and of the rate of H+-transport from the cytoplasm into the mitochondria. 2. The cerebrocortical vascular and NAD/NADH redox state responses induced by electrical stimulation changed in the early hypovolaemic phase of shock. At this time, electrical stimulation of the brain cortex led to NADH oxidation in the majority of the experiments or in some experiments, the stimulation did not bring about changes in the redox state of the cortex. The total loss of the reactivity to direct stimulation of the cerebrocortical vessels and of energy metabolism preceded the occurrence of cortical ischaemia during the hypovolaemic phase of shock. 3. Since after reinfusion of the shed blood, redox state and vasculature remained unresponsive to stimulation even in those experiments in which the cortical ischaemia improved, it is concluded that the carbohydrate and oxidative metabolism of the brain cortex were already irreversibly damaged in the early phase of hypovolaemic shock.  相似文献   

4.
Overduin SA  Servos P 《PloS one》2008,3(1):e1505

Background

Functional imaging has recently been used to investigate detailed somatosensory organization in human cortex. Such studies frequently assume that human cortical areas are only identifiable insofar as they resemble those measured invasively in monkeys. This is true despite the electrophysiological basis of the latter recordings, which are typically extracellular recordings of action potentials from a restricted sample of cells.

Methodology/Principal Findings

Using high-resolution functional magnetic resonance imaging in human subjects, we found a widely distributed cortical response in both primary somatosensory and motor cortex upon pneumatic stimulation of the hairless surface of the thumb, index and ring fingers. Though not organized in a discrete somatotopic fashion, the population activity in response to thumb and index finger stimulation indicated a disproportionate response to fingertip stimulation, and one that was modulated by stimulation direction. Furthermore, the activation was structured with a line of symmetry through the central sulcus reflecting inputs both to primary somatosensory cortex and, precentrally, to primary motor cortex.

Conclusions/Significance

In considering functional activation that is not somatotopically or anatomically restricted as in monkey electrophysiology studies, our methodology reveals finger-related activation that is not organized in a simple somatotopic manner but is nevertheless as structured as it is widespread. Our findings suggest a striking functional mirroring in cortical areas conventionally ascribed either an input or an output somatotopic function.  相似文献   

5.
Abstract

Objectives: Little is known about differences of cortical activation according to body location. We attempted to compare brain activation patterns by somatosensory stimulation on the palm and dorsum of the hand, using functional magnetic resonance imaging (fMRI).

Method: We recruited 15 healthy right-handed volunteers for this study. fMRI was performed during touch stimulation using a rubber brush on an area of the same size on the palm or dorsum of the hand. Regions of interest (ROIs) were drawn at the primary sensory–motor cortex (SM1), posterior parietal cortex, and secondary somatosensory cortex.

Results: Group analysis of fMRI data indicated that touch stimulation on the palm resulted in production of more activated voxels in the contralateral SM1 and posterior parietal cortex than on the dorsum of the hand. The most activated ROI was found to be the contralateral SM1 by stimulation of the palm or dorsum, and the number of activated voxels (5875) of SM1 by palm stimulation was more than 2 times that (2282) of dorsum stimulation. The peak activated value in the SM1 by palm stimulation (16.43) was also higher than that of the dorsum (5.52).

Conclusion: We found that stimulation of the palm resulted in more cortical activation in the contralateral SM1 than stimulation of the dorsum. Our results suggested that the palm of the hand might have larger somatotopy of somatosensory representation for touch in the cerebral cortex than the dorsum of the hand. Our results would be useful as a rehabilitation strategy when more or less somatosensory stimulation of the hand is necessary.  相似文献   

6.
The spectral-correlation analysis of biopotentials in the cortex and some other brain structures (the anteroventral thalamic nucleus, dorsal hippocampus, lateral geniculate body, mid-brain reticular formation), in chronic experiments on alert rabbits, revealed that during electrical stimulation of thalamic mid-line nuclei within the ranges of 1-3, 4-7 and 8-10 c/s, there occured a rearrangement of the EEG frequencies; a dominant, narrow-band peak at the stimulation frequency, appeared. The coherence of the biopotentials of different cortical areas, of the cortex and subcortical formations increased during the stimulation at the frequency of the stimulation, reaching maximum values between the potentials of the visual and sensorimotor cortical areas.  相似文献   

7.
Properties of cortical spreading depression were studied during different phases of cyclic excitation developing in the neocortex of rats under the influence of low-frequency electrical stimulation. Waves of spreading depression appeared in the cortex spontaneously or after microinjection of potassium chloride. During each excitation cycle a state preventing the passage and appearance of these waves developed in the region of electrical stimulation. The degree of blocking in other areas of the cortex outside the region of stimulation depended on the distance from the site of electrical stimulation and on generalization of excitatation over the cortex. After the end of the excitation phase, while the current continued to act, the ability of the cortex to conduct the depression wave was restored. In intervals of cyclic excitation the duration of the waves of spreading depression remained on average only half its duration in the absence of stimulation. The time course of development and the character of recovery of depression during the intervals confirm the hypothesis that activation of the potassium-sodium pump may have a role in the blocking mechanism and enable the temporal parameters of this process to be estimated.  相似文献   

8.
Zaehle T  Rach S  Herrmann CS 《PloS one》2010,5(11):e13766
Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS) has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS) has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP) selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity.The present findings are the first direct electrophysiological evidence of an interaction of tACS and ongoing oscillatory activity in the human cortex. The data demonstrate the ability of tACS to specifically modulate oscillatory brain activity and show its potential both at fostering knowledge on the functional significance of brain oscillations and for therapeutic application.  相似文献   

9.
Over the last two centuries, electrical microstimulation has been used to demonstrate causal links between neural activity and specific behaviors and cognitive functions. However, to establish these links it is imperative to characterize the cortical activity patterns that are elicited by stimulation locally around the electrode and in other functionally connected areas. We have developed a technique to record brain activity using the blood oxygen level dependent (BOLD) signal while applying electrical microstimulation to the primate brain. We find that the spread of activity around the electrode tip in macaque area V1 was larger than expected from calculations based on passive spread of current and therefore may reflect functional spread by way of horizontal connections. Consistent with this functional transynaptic spread we also obtained activation in expected projection sites in extrastriate visual areas, demonstrating the utility of our technique in uncovering in vivo functional connectivity maps.  相似文献   

10.
Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation.  相似文献   

11.
Zhang ZQ  Shu SY  Liu SH  Guo ZY  Wu YM  Bao XM  Zheng JL  Ma HZ 《生理学报》2008,60(4):504-510
本研究用功能磁共振成像技术观察了人脑进行不同难度数字加减计算时的脑区激活情况,并探讨大脑皮层和皮层下结构在数字计算中的作用.用Siemens 1.5 Tesla磁共振机对16名右利手健康志愿者进行简单及复杂数字加减任务的fMRI扫描.实验采用组块设计.刺激任务分为简单加减计算任务、复杂加减计算任务和基线任务.用SPM99软件进行数据分析和脑功能区定位.分别比较同一任务各个脑区平均激活强度和同一脑区在两种任务中的激活强度.结果显示,简单及复杂加减计算激活的被试者的脑区基本相同,激活的皮层区主要见于额叶、顶叶、枕叶、扣带回、丘脑及小脑;简单及复杂加减计算激活的皮层下结构包括两侧尾状核、左纹状体边缘区等基底核结构和丘脑.在简单及复杂计算中,纹状体与皮质结构(额叶、顶叶)间激活强度均无显著性差异.简单计算与复杂计算比较,右顶叶,在复杂任务时出现激活,在简单任务时未出现激活.上述结果提示,完成数字计算任务的脑区除了额叶、顶叶、扣带回等皮层结构外,大脑皮层下的一些结构如纹状体、纹状体边缘区,也是参与数字计算的重要部位.皮层下结构纹状体和优势半球的纹状体边缘区参与了数字工作记忆,可能是进行数字计算神经环路的重要组成部位.右项叶(缘上回)只在复杂任务出现激活,该区可能是视空间记忆和加工的重要部位.  相似文献   

12.
A study was carried out on 8 adult cats of functional role of the frontal, parietal and occipital parts of the neocortex, and also of the dorsal hippocampus, mediodorsal thalamic nucleus and caudate nucleus head, in realization of a delayed spatial choice (DSCh) before and after compensatory reorganizations of the brain activity caused by multiple electrical stimulation of the frontal part of the cerebral cortex. Compensatory reorganization led to a change of functional significance of these structures. While before this change the frontal cortex, hippocampus and mediodorsal thalamic nucleus were critically necessary brain areas for the realization of the DSCh, after it parietal and occipital cortical areas acquired such significance. The obtained data are discussed proceeding from the principle of the integrity in the brain activity.  相似文献   

13.
The cornea has been a focus of animal electrophysiological research for decades, but little is known regarding its cortical representation in the human brain. This study attempts to localize the somatotopic representation of the cornea to painful stimuli in human primary somatosensory cortex using functional magnetic resonance imaging (fMRI). In this case study, a subject was imaged at 3T while bright light was presented in a block-design, which either produced pain and blinking (during photophobia) or blinking alone (after recovery from photophobia). Pain and blinking produced precisely localized activations in primary somatosensory cortex and primary motor cortex. These results indicate that noxious stimulation of the cornea can produce somatotopic activation in primary somatosensory cortex. This finding opens future avenues of research to evaluate the relationship between corneal pain and central brain mechanisms relating to the development of chronic pain conditions, such as dry eye-like symptoms.  相似文献   

14.
Chen LM  Friedman RM  Roe AW 《生理学报》2008,60(5):664-668
While the activation of primary somatosensory (SI) cortex during pain perception is consistently reported in functional imaging studies on normal subjects and chronic pain patients, the specific roles of SI, particularly the subregions within SI, in the processing of sensory aspects of pain are still largely unknown. Using optical imaging of intrinsic signal (OIS) and single unit electrophysiology, we studied cortical activation patterns within SI cortex (among Brodmann areas 3a, 3b and 1) and signal amplitude changes to various intensities of non-nociceptive, thermal nociceptive and mechanical nociceptive stimulation of individual distal finerpads in anesthetized squirrel monkeys. We have demonstrated that areas 3a and 1 are preferentially involved in the processing of nociceptive information while areas 3b and 1 are preferentially activated in the processing of non-nociceptive (touch) information. Nociceptive activations of individual fingerpad were organized topographically suggesting that nociceptive topographic map exits in areas 3a and 1. Signal amplitude was enhanced to increasing intensity of mechanical nociceptive stimuli in areas 3a, 3b and 1. Within area 1, nociceptive response co-localizes with the non-nociceptive response. Therefore, we hypothesize that nocicepitve information is area-specifically represented within SI cortex, in which nociceptive inputs are preferentially represented in areas 3a and 1 while non-nociceptive inputs are preferentially represented in areas 3b and 1.  相似文献   

15.
Although the cerebral cortical dopamine D(1) receptor is considered to play a role in normal and abnormal brain function, little information is available on its characteristics in human brain. We compared dopamine-stimulated adenylyl cyclase (AC) activity in homogenates of cerebral cortex (frontal, temporal, parietal, occipital and cingulate cortex) of autopsied brain of neurologically normal subjects to that in striatum. Cerebral cortical AC activity was modestly and dose-dependently stimulated by dopamine (maximal 20-30%) with low microM EC50s and such stimulation was inhibited by the selective dopamine D1 receptor antagonist SCH23390. The magnitude of the maximal stimulation by dopamine was similar in autopsied and biopsied cerebral cortex. The extent of maximal stimulation was similar to that in dopamine-rich striatum (caudate, putamen and nucleus accumbens), despite much lower density of dopamine D1 receptors in cerebral cortex vs. striatum. The EC50 for dopamine stimulation in cerebral cortex (approximately 1 microM) was lower than that for caudate and putamen (approximately 3 microM). No detectable dopamine stimulation was observed in cerebellar cortex, thalamus or hippocampus. Dopamine stimulation in both cerebral cortex and striatum was independent of calcium activation. We conclude that dopamine stimulated AC can be measured in cerebral cortex of human brain allowing for the possibility that this process can be examined in human brain disorders in which dopaminergic abnormalities are suspected.  相似文献   

16.
Advances in epilepsy studies have shown that specific changes in hemodynamics precede and accompany seizure onset and propagation. However, it has been challenging to noninvasively detect these changes in real time and in humans, due to the lack of fast functional neuroimaging tools. In this study, we present a functional diffuse optical tomography (DOT) method with the guidance of an anatomical human head atlas for 3‐dimensionally mapping the brain in real time. Central to our DOT system is a human head interface coupled with a technique that can incorporate topological information of the brain surface into the DOT image reconstruction. The performance of the DOT system was tested by imaging motor tasks‐involved brain activities on N = 6 subjects (3 epilepsy patients and 3 healthy controls). We observed diffuse areas of activations from the reconstructed [HbT] images of patients, relative to more focal activations for healthy subjects. Moreover, significant pretask hemodynamic activations were also seen in the motor cortex of patients, which indicated abnormal activities persistent in the brain of an epilepsy patient. This work demonstrates that fast functional DOT is a valuable tool for noninvasive 3‐dimensional mapping of brain hemodynamics.   相似文献   

17.
A rich literature has documented changes in cortical representations of the body in somatosensory and motor cortex. Recent clinical studies of brain–machine interfaces designed to assist paralyzed patients have afforded the opportunity to record from and stimulate human somatosensory, motor, and action-related areas of the posterior parietal cortex. These studies show considerable preserved structure in the cortical somato-motor system. Motor cortex can immediately control assistive devices, stimulation of somatosensory cortex produces sensations in an orderly somatotopic map, and the posterior parietal cortex shows a high-dimensional representation of cognitive action variables. These results are strikingly similar to what would be expected in a healthy subject, demonstrating considerable stability of adult cortex even after severe injury and despite potential plasticity-induced new activations within the same region of cortex. Clinically, these results emphasize the importance of targeting cortical areas for BMI control signals that are consistent with their normal functional role.  相似文献   

18.
Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.  相似文献   

19.
The space medicine data on the nature of motor disorders suggest an important role of the support inputs in the control of mammalian tonic and postural systems. Progress in functional magnetic resonance tomography (fMRT) makes it possible to perform in vivo analysis of various brain areas during stimulation of the support afferentation. Under these conditions, specific activation of the brain cortical areas was studied in 19 healthy subjects (with the mean age of 38 ± 15.13 years) and 23 patients (with the mean age of 53 ± 9.07 years) with focal CNS lesions (cortical-subcortical ischemic stroke). During scanning of subjects, the support areas of the soles of the feet were stimulated using a block design to simulate slow walking. In healthy subjects, significant activation was recorded (p < 0.05 at the cluster level) in the primary somatosensory cortex, premotor and dorsolateral prefrontal cortex, and insular lobe. In patients that had had a stroke, activation of the locomotion-controlling supraspinal systems clearly depended on the stage of the disease. In patients with a cortical-subcortical stroke, the pattern of contralateral activation of the sensorimotor locomotion predominated during motility rehabilitation.  相似文献   

20.
EEG activation can be produced by electrical stimulation of some cortical points with the same threshold current strength as by the midbrain RF and thalamic CM stimulation. Near-threshold stimulation of all these points acting simultaneously with inhibitory conditioned signals does not disturb the effector inhibition but displays an EEG difference between negative signals: the fine differentiation sound evokes considerable EEG desynchronization, while the rough one does not change the background rhythms. The same stimulation combined with a positive signal which has been made ineffective by successive inhibition or extinction, reestablishes the intensive EEG activation in response to this signal and the effector conditioned reflex. Therefore a mode-rate additional stimulation of the activating points in the cortex, RF and CM has a disinhibitory influence. When initiated in the cortex this influence may be transmitted from the cortical point to other parts of the brain along transcortical and corticofugal connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号