共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
Identification of a non-basic domain in the histone H4 N-terminus required for repression of the yeast silent mating loci. 下载免费PDF全文
We have shown previously that a stretch of four charged residues (16-19) at the histone H4 N-terminus is involved in repression of the yeast silent mating loci. One of these residues, Lys16, is a site for acetylation, which may prevent repression of the silent mating loci. In this paper we ask whether other sequences in histone H4, possibly in conjunction with H3 residues, are required for repression. We find that even in combination, the other seven acetylatable lysines in H3 and H4 do not function in repression. In contrast, we have found that an adjacent relatively uncharged domain (residues 21-29) is required for repression and that single amino acid insertions and deletions in this region are extremely detrimental. We propose that the basic and non-basic domains together form a DNA (or protein) induced amphipathic alpha-helix required in the formation of a repressive chromatin structure. 相似文献
6.
7.
8.
9.
10.
Identification of suberimidate cross-linking sites of four histone sequences in H1-depleted chromatin. Histone arrangement in nucleosome core 总被引:2,自引:0,他引:2
The arrangement of 8 histones in the nucleosome core has been investigated by identifying the sites of 4 histone sequences cross-linked with a bifunctional amino-group reagent, dimethyl suberimidate, selected from among 4 diimidoesters of various linker lengths examined. H1-depleted calf thymus chromatin was allowed to react with 14C-labeled suberimidate at pH 8.5 and 0 degrees C. The cross-linked chromatin was then digested exhaustively with trypsin. Almost all the histone fragments were released from the chromatin with 0.25 M HCl and chromatographed on several columns and on paper. Cross-linked peptides were detected by analyzing the content of radioactive suberimidoylbislysine after acid hydrolysis. The chromatographic procedure developed here showed that the whole histone fragments contained 29 mol% of the total linked reagent as suberimidoylbisylsine. The 5 finally purified cross-linked peptides were identified from the total and N-terminal amino acids of each pair of peptides separated by two-dimensional cellulose thin layer chromatography after cutting the linker by ammonolysis. Thus, intramolecular cross-linking was found between Lys-5 and Lys-9 of H2A, and Lys-34 and Lys-85 of H2B, while intermolecular cross-linking was found between Lys-24 (or 27) of H2B and Lys-74 of H2A, Lys-85 of H2B and Lys-91 of H4, and Lys-120 of H2B and Lys-115 of H3 and/or Lys-77 of H4. Most of these lysine residues are located in the DNA-binding segments of the 4 histone sequences identified previously [Kato, Y. & Iwai, K, (1977) J. Biochem. 81, 621--630]. All the 5 or 6 cross-links can be located in a heterotypic tetramer consisting of one molecule each of H2A, H2B, H3, and H4, and a model of the histone arrangement in the tetramer is proposed. Two such tetramers may compose to the histone octamer in the nucleosome core. 相似文献
11.
12.
Two genes encoding a particular H3 histone variant were isolated from Arabidopsis thaliana. These genes differ from the H3 genes previously cloned from Arabidopsis and other plants by several interesting properties: (1) the two genes are located close to each other; (2) their coding regions are interrupted by two or three small introns, the two closest to the initiation codon being located at the same place in the two genes; (3) another, long intron is located in the 5'-untranslated region just before the initiation codon of gene I as deduced from the sequence of several corresponding cDNAs, and very likely also of gene II; (4) these genes do not show preferential expression in organs containing meristematic tissues contrary to the classical intronless replication-dependent histone genes, thus suggesting that their expression is not replication-dependent; (5) the protein encoded by both genes is the same and corresponds to a minor H3 variant highly conserved among all the plant species studied up to now. All these characteristics are common with the animal replication-independent H3.3 histone genes and it is assumed that the genes described here are the first example of the equivalent H3.3 gene family in plants. Interestingly, the promoter regions of the two genes have the same general structure as the Arabidopsis intronless genes. Possible implications on the regulation of H3 genes expression are discussed. 相似文献
13.
14.
15.
16.
Nucleotide sequences of Caenorhabditis elegans core histone genes. Genes for different histone classes share common flanking sequence elements 总被引:8,自引:0,他引:8
We have determined the nucleotide sequence of core histone genes and flanking regions from two of approximately 11 different genomic histone clusters of the nematode Caenorhabditis elegans. Four histone genes from one cluster (H3, H4, H2B, H2A) and two histone genes from another (H4 and H2A) were analyzed. The predicted amino acid sequences of the two H4 and H2A proteins from the two clusters are identical, whereas the nucleotide sequences of the genes have diverged 9% (H2A) and 12% (H4). Flanking sequences, which are mostly not similar, were compared to identify putative regulatory elements. A conserved sequence of 34 base-pairs is present 19 to 42 nucleotides 3' of the termination codon of all the genes. Within the conserved sequence is a 16-base dyad sequence homologous to the one typically found at the 3' end of histone genes from higher eukaryotes. The C. elegans core histone genes are organized as divergently transcribed pairs of H3-H4 and H2A-H2B and contain 5' conserved sequence elements in the shared spacer regions. One of the sequence elements, 5' CTCCNCCTNCCCACCNCANA 3', is located immediately upstream from the canonical TATA homology of each gene. Another sequence element, 5' CTGCGGGGACACATNT 3', is present in the spacer of each heterotypic pair. These two 5' conserved sequences are not present in the promoter region of histone genes from other organisms, where 5' conserved sequences are usually different for each histone class. They are also not found in non-histone genes of C. elegans. These putative regulatory sequences of C. elegans core histone genes are similar to the regulatory elements of both higher and lower eukaryotes. The coding regions of the genes and the 3' regulatory sequences are similar to those of higher eukaryotes, whereas the presence of common 5' sequence elements upstream from genes of different histone classes is similar to histone promoter elements in yeast. 相似文献
17.
18.
19.