首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were established in field microplots to examine the association between Heterodera glycines and the blue form of Fusarium solani in sudden death syndrome of soybean (SDS). Foliar disease symptoms occurred on more plants per plot, appeared 3 to 7 days earlier, and were more severe on plants grown in plots infested with F. solani + H. glycines than on those inoculated with F. solani only. Yields were suppressed only in treatments that included the nematode. Numbers of H. glycines cysts and second-stage juveniles were significantly lower in plots infested with F. solani + H. glycines than with the nematode alone. Fusarium solani was able to infect cysts and eggs.  相似文献   

2.
Half-root tests were established to examine the association between Heterodera glycines and the blue strain of Fusarium solani, the causal agent of sudden death syndrome (SDS) of soybean. Two independent root systems were established for soybean ''Coker 156'' and inoculated (half root/half root) with F. solani, H. glycines, both organisms on opposite root halves, both organisms on one root half, or neither one. Foliar symptoms were more severe for plants inoculated with both organisms on one root half than on opposite root halves or F. solani alone. Root necrosis ratings were more severe when both pathogens were combined on one root half than on opposite root halves. Heterodera glycines population development was reduced by the combination of both pathogens on one root half compared to opposite root halves or H. glycines alone, regardless of inoculation time.  相似文献   

3.
A series of greenhouse experiments was conducted to elucidate the postinfection development of Heterodera glycines in response to applications of alachlor and fenamiphos. The rate of H. glycines maturation on a susceptible soybean cultivar was not altered by 1.0 μg alachlor/g soil but was completely inhibited by 1.0 or 1.5 μg fenamiphos/g soil. An alachlor-fenamiphos combination allowed development after an initial 300-degree-day delay. Nematode maturation on the resistant soybean cultivar Centennial with 1.0 μg alachlor/g soil was similar to that observed on an untreated resistant control. Twice as many females matured on Centennial plants growing in alachlor-treated soil as on untreated Centennial plants. Fenamiphos in combination with alachlor (1.0 μg a.i./g soil) allowed development on Centennial at half the rate of the resistant control. This antagonism between alachlor and fenamiphos on development may help to explain late season population resurgence of H. glycines observed with field application of these pesticides.  相似文献   

4.
Locations of syncytia induced by the soybean cyst nematode (SCN), Heterodera glycines race 3, were compared in roots of ''Essex'', a susceptible soybean (Glycine max (L.) Merr.) cultivar, at three soil water regimes. The plants were grown in wet (-5 to -20 kPa), moderately wet (-30 to -50 kPa), and moderately dry (-60 to -80kPa) autoclaved Captina silt loam soil (Typic Fragiudult). In the moderately dry soil, syncytia were found only in the stele, but in moderately wet and wet soils, syncytia occurred primarily in the cortex and occasionally in the stele. The location of syncytia in the cortical tissue of roots growing in wet and moderately wet soils may account for the tolerance of susceptible soybean cultivars grown under well-irrigated conditions where there is less interference with water transport through roots. Cell-wall perforations and dense cytoplasm were characteristic of syncytial cells observed in root tissues of all treatments.  相似文献   

5.
On a few occasions, soybeans with broken root tips were included in tests to evaluate resistance to Heterodera glycines. Although females developed on these plants, the numbers tended to be lower than on similarly treated intact roots. To test the possibility that removal of the root meristem affected nematode development, a culture system using pruned soybeans was devised that permitted access to the roots without disturbing the plants. Treatments included removal of 2 mm of root tip at various times ranging from 24 hours before to 10 days after inoculation, or roots left intact. In each experiment, all roots were inoculated at the same time with equal numbers of freshly hatched second-stage juveniles of Heterodera glycines. No differences in nematode development were detected in plants with root tips removed after inoculation compared to the control. When tips were removed at or before inoculation, fewer juveniles entered roots and relatively fewer nematodes developed. Penetration levels and development correlated with root tip removal such that progressively fewer nematodes entered roots and relatively greater numbers of nematodes remained undeveloped as the time interval between root tip removal and inoculation was increased.  相似文献   

6.
Seven soybeans were selected from 200 entries evaluated for tolerance to soybean cyst nematode (SCN), Heterodera glycines. Tolerance to SCN was measured by comparing the seed yield from aldicarb-treated vs. nontreated plots. A yield response index (YRI) was calculated for each entry: YRI = (seed yield from nontreated plot/seed yield from treated plot) × 100. The soybean entries Coker 156, PI 97100, and S79-8059 exhibited high tolerance (YRI) to SCN when compared to Essex even though they became heavily infected with SCN. Tolerance in soybeans to SCN may be useful in pest management programs designed to stabilize soybean yield.  相似文献   

7.
A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; ''Pickett'' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and ''Pickett'' but not in PI 209332.  相似文献   

8.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

9.
The objective of this experiment was to measure the change in female index (FI) of Heterodera glycines from bioassays on Bedford, Peking, PI 89772, and PI 90763 soybean (Glycine max) for 12 cropping sequence treatments over a 10-year period. Cropping sequences included continuous plantings of Forrest, Peking, and D72-8927 soybean (all resistant to race 3); Bedford, Nathan, and D75-10710 soybean (all resistant to races 3 and 14); a Bedford-corn (Zea mays) rotation; a rotation of Bedford, Essex (susceptible), and Forrest; and a 70:30 blend of Bedford and Forrest. The FI from bioassays with PI 89772 and PI 90763 decreased over time from 24.3 to 1.6 with treatments involving continuous Bedford, Nathan, and D75-10710 and the Bedford-corn rotation. The FI increased in bioassays using Bedford with treatments involving Bedford, Nathan, D75-10710, the Bedford-Forrest blend, and the two rotations. Results of this field experiment confirm greenhouse experiments in which reciprocal changes occur in FI on PI 89772 and PI 90673 compared with FI on Bedford.  相似文献   

10.
Fusarium virguliforme is a soil-borne pathogen that causes sudden death syndrome (SDS) in soybean. SDS is an important disease that causes significant losses in soybean growing areas worldwide. Little is known about the interaction between F. virguliforme and soybean. We have developed a protoplast-based fungal transformation system for F. virguliforme . One of the applications of the transformation system was the production of a green fluorescent protein (GFP)-expressing fungal transformant. The GFP-expressing fungus can be used to study fungal infection processes including fungal penetration, colonization, and spread, especially at the early stages of disease development. Furthermore, in an attempt to increase the genetic resources available to identify and characterize fungal virulence genes involved in the F. virguliforme -soybean system, we generated random insertional mutations in F. virguliforme using restriction enzyme mediated integration.  相似文献   

11.
Oxamyl coated on soybean (Glycine max (L.) Merr. cv. Elgin) seeds in solutions of 20, 40, 80, and 160 mg/ml had no serious deleterious effects on seedling emergence and growth when planted in sterile soil. Seedling emergence on day 3 was less than that of the uncoated control, but by day 7 emergence was equal to, or greater than, the control. Shoot and root growth from seed coated with oxamyl in 40 and 80 mg/ml solutions was greater than that of the control. In soil infested with soybean cyst nematode, Heterodera glycines, shoot weight of soybean plants from seeds coated with oxamyl in 80 mg/ml solution was 11 and 9% greater at weeks 3 and 7, respectively, than from uncoated seeds. Numbers of juveniles (J3 and J4) and adults of H. glycines observed on the roots of plants from oxamyl-coated seeds were 83, 42, and 49% less at weeks 3, 5, and 7, respectively, than numbers on the roots of the untreated control. Numbers of J2 extracted from the roots of plants from oxamyl-coated seeds were 75% less at weeks 5 and 7 than those extracted from roots of uncoated seeds. The numbers of J2 extracted from the soil planted to oxamyl-coated seeds were 51 and 33% less at weeks 5 and 7, respectively, than from soil planted to uncoated seed.  相似文献   

12.
Trap crops that stimulate nematode egg hatching but not reproduction have been reported as an effective means for managing certain nematodes. Studies were carried out at two field sites each year in 1998 and 1999 to evaluate the potential of trapping the soybean cyst nematode (Heterodera glycines) with soybean and pea in the corn year to manage the nematode in Minnesota. The trap crops were planted on the same day as corn at each site and later killed with the herbicide glyphosate. Nematode egg densities were determined at planting, 1 and 2 months after planting, and at harvest. Treatments included four seeding rates (0, 124,000, 247,000, and 494,000 seeds/ha) of resistant soybean as a trap crop and four kill dates (3, 4, 5, and 6 weeks after planting). No effects of the trap-crop and kill-date treatments on H. glycines population density, corn yield, and the followingyear soybean yield were observed at the two locations. In a second study, the experiment included four trap-crop comparisons (resistant soybean at 494,000 seeds/ha, susceptible soybean at 494,000 seeds/ha, pea at 1,482,000 seeds/ha, and no trap crop) and five kill dates (3, 4, 5, 6 weeks after planting, and no-kill). At the Waseca site, egg density at harvest was lower where resistant soybean was grown for 6 weeks and where pea was grown for 5 and 6 weeks compared with where no trap crop was grown. Maintaining pea plants for more than 5 weeks, however, reduced corn yield by 20% at the Waseca site. At the Lamberton site, egg density at harvest was lower where the susceptible soybean was grown for 5 weeks compared with where no trap crop was grown. Even with significant reduction of eggs in some treatments, use of soybean and pea as trap crops in the corn year was not an effective means for managing H. glycines.  相似文献   

13.
The purpose of this research was to compare the overwinter survival of populations of Heterodera glycines at different latitudes in the United States and the effect of changing latitudes before and after the initiation of dormancy. Soil samples infested with H. glycines were collected in August or October in 1992 to 1994 from soybean fields in two to four states (combinations of Arkansas, Florida, Minnesota, Missouri, and Wisconsin). The samples were mixed thoroughly, divided into subsamples, shipped to an overwinter location, and buried until time for processing. To determine survival, cysts, eggs, and second-stage juveniles were extracted from replicated subsamples and counted each month from December to May. Survival generally was between 50% and 100%, and often was best in the state of origin. In Florida, survival was at the 50 to 100% level in soil from most locations, and in Wisconsin was near 100%. Survival of H. glycines in Arkansas and Missouri varied more than at the other locations. In a separate test, survival in microplots in Arkansas, in a more natural environment than that of buried samples, was 70 to 94% for field isolates from Arkansas, Minnesota, and Missouri and 100% for isolates of races 1, 3, and 14 that had been maintained in a greenhouse for several years. Survival appears to be better than previous tests had indicated. High survival rates require cultivars with high levels of resistance and long-term rotations for management.  相似文献   

14.
The objective of this study was to determine the interrelationships of Heterodera glycines races based on their resistance to soybean (Glycine max) cultivars and lines against which they were tested. Greenhouse tests determined the numbers of females of each of eight races of H. glycines that developed on 277 to 522 soybean cultivars and lines. A Female Index (number of females on a test cultivar as a percentage of the number on ''Lee 74'') was calculated and used in frequency distributions, correlations, and duster analyses of the resistance reactions to the different races in an attempt to determine relationships among cultivars. Frequency distribution patterns of all cultivars and lines tested against each race were skewed in favor of resistance, and in some cases bimodality was observed. The majority of correlations between pairs of races were highly significant. Cluster analyses based on the correlations divided eight races into four clusters that explained 73% of the variation in resistance. Cluster 1 was comprised of races 2, 4, and 14; Cluster 2 was comprised of races 6 and 9; Cluster 3 was comprised of races 1 and 3; and Cluster 4 was comprised of race 5. The information obtained in this study could increase the efficiency of testing resistant soybean breeding lines for resistance to H. glycines.  相似文献   

15.
Thirteen soybean plant introduction (PI) lines, selected for their apparent susceptibility to Heterodera glycines, were compared with cultivar Lee 74 as hosts of H. glycines races 1, 2, 3, and 4. Race 3 produced the highest average number of females of the four races. Compared to Lee 74, more (P = 0.05) females of H. glycines race 1 were extracted from eI 274420, PI 274423, and PI 317333; PI 86457 had more females of H. glycines race 2; and PI 86443, PI 86457, PI 261467, PI 274420, PI 274421, and PI 274423 had more females of H. glycines race 3. Similar numbers of females of H. glycines race 4 developed on all of the soybean lines and Lee 74. PI 274421, PI 274420, or PI 196159 could provide a more or equally susceptible host for H. glycines races 1, 2, 3, and 4 than Lee 74. One of these three lines could be substituted for Lee as the standard susceptible cultivar in the race determination test.  相似文献   

16.
The effects of alachlor (2.25 kg a.i./ha) and fenamiphos (2.25 kg a.i./ha) on the penetration and development of Heterodera glycines were examined on Glycine max cultivars Deltapine 105 planted 29 April, 29 May, and 29 June 1986 and Deltapine 105 and Centennial planted 15 May, 15 June, and 15 July 1987. Penetration was lowest on the third planting of soybeans and on fenamiphos-treated plants. Development from second-stage juveniles to adult females required 270 (1986) and 260 (1987) DD20/32 on roots from the first planting control and alachlor treatments. Fenamiphos, alone or with alachlor, retarded development in Deltapine 105 (1986) and in Centennial (1987). Males matured in roots from the second planting in 190 (1986) and 180 (1987) DD20/32 regardless of treatment or cultivar. No development occurred in roots from the third planting until 400 DD20/32 in 1986, but in 1987 development was similar to that in roots from the second planting. Nematode development was similar in alachlor-treated and control roots regardless of planting date. Fenamiphos restricted nematode penetration on most planting dates and slowed development. Simultaneous applications of alachlor and fenamiphos usually also inhibited development.  相似文献   

17.
Short-term greenhouse studies with soybean (Glycine max cv. Bragg) were used to examine interactions between the soybean cyst nematode (Heterodera glycines) and two other common pests of soybean, the stem canker fungus (Diaporthe phaseolorum var. caulivora) and the soybean looper (Pseudoplusia includens), a lepidopterous defoliator. Numbers of cyst nematode juveniles in roots and numbers of cysts in soil and roots were reduced on plants with stem cankers. Defoliation by soybean looper larvae had the opposite effect; defoliation levels of 22 and 64% caused stepwise increases in numbers of juveniles and cysts in both roots and soil, whereas numbers of females in roots decreased. In two experiments, stem canker length was reduced 40 and 45% when root systems were colonized by the soybean cyst nematode. The absence of significant interactions among these pests indicates that the effects of soybean cyst nematode, stem canker, and soybean looper on plant growth and each other primarily were additive.  相似文献   

18.
Heterodera glycines is a serious pest of soybean in the United States. Plant introductions 90763 and 424595 are reported to be resistant to H. glycines race 5; however their genetic relationship for resistance is unknown. Crosses between these two lines and the susceptible cultivar Essex were studied in the F₁, F₂, and F₃ generations to determine the number of genes involved in inheritance of resistance. The plants were screened using conventional techniques based on the index of parasitism. The data were subjected to analyses using chi-square test to determine goodness of fit between observed and expected genetic ratios. The cross PI 424595 x Essex segregated 1 resistant:63 susceptible in the F₂ generation, which indicated the presence of three recessive genes controlling resistance to race 5. In the cross PI 90763 x Essex, resistance was conditioned by one dominant and two recessive genes. The cross between PI 424595 and PI 90763 segregated into 13 resistant:3 susceptible. The data fit a four-gene model with two recessive and two dominant genes with epistasis. PI 90763 has a dominant gene, whereas PI 424595 has a recessive gene; both share two additional recessive genes for resistance to race 5. This information is important to geneticists and soybean breeders for the development of cultivars resistant to H. glycines.  相似文献   

19.
20.
Optimization of the Heterodera glycines Race Test Procedure   总被引:1,自引:0,他引:1  
Effects of pot size, length of seedling radicle at the time of inoculation with Heterodera glycines, transplanting after inoculation, type and amount of inoculum, and temperature were tested to determine the optimum procedure for the H. glycines race test. Numbers of H. glycines females extracted from plants in 7.5-cm-d pots tended to be higher than numbers from 10-cm-d pots, but not significantly so. Radicle lengths from 2.5 cm to 7.5 cm had no effect. Transplanting after inoculation reduced the variation in the number of females extracted, but the numbers of females produced were very low. Plump females (40 per pot) or eggs (4,000 per pot) were the best inocula. A constant temperature of 28 C appeared to be optimum. More H. glycines females were extracted from plants 28 days after inoculation than at 35 days. Race tests in which all of these factors were included were still highly variable in the number of H. glycines females extracted from different replications of the same test host. Tests of several susceptible cultivars revealed differences in their capabilities as hosts of H. glycines races.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号