首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin of fragmin-actin complex is phosphorylated by an endogenous kinase from plasmodium of Physarum polycephalum. The phosphorylation abolishes the nucleation and capping activities of fragmin-actin complex. The kinase has been purified and termed actin kinase [Furuhashi, K. & Hatano, S. (1990) J. Cell Biol. 111, 1081-1087]. Enzymatic properties of the purified actin kinase were studied in detail. Actin kinase exhibited the highest activity under conditions physiological for the plasmodium (30 mM KCl, 6 mM MgCl2, pH 7.0). The Vmax and the Km of the enzyme for ATP were about 83 mumol/min/mg and 25 microM, respectively. The Km for fragmin-actin complex was 190 nM. The purified actin kinase phosphorylated actin of fragmin-actin complex at a constant rate regardless of Ca2+ concentration. Similarly, 2 microM cAMP, 2 microM cGMP, 2 micrograms/ml calmodulin in the presence of Ca2+ or 1 mM GTP showed no effect on the activity of the purified enzyme. Actin kinase did not phosphorylate histone H1, H2B, alpha-casein, or beta-casein, suggesting that actin kinase is a new kind of protein kinase which specifically phosphorylates actin of the fragmin-actin complex.  相似文献   

2.
Amoebae and plasmodia constitute the two vegetative growth phases of the Myxomycete Physarum. In vitro and in vivo phosphorylation of actin in plasmodia is tightly controlled by fragmin P, a plasmodium-specific actin-binding protein that enables actin phosphorylation by the actin-fragmin kinase. We investigated whether amoebal actin is phosphorylated by this kinase, in spite of the lack of fragmin P. Strong actin phosphorylation was detected only following addition of recombinant actin-fragmin kinase to cell-free extracts of amoebae, suggesting that amoebae contain a protein with properties similar to plasmodial fragmin. We purified the complex between actin and this protein to homogeneity. Using an antibody that specifically recognizes phosphorylated actin, we demonstrate that Thr203 in actin can be phosphorylated in this complex. A full-length amoebal fragmin cDNA was cloned and the deduced amino acid sequence shows 65% identity with plasmodial fragmin. However, the fragmins are encoded by different genes. Northern blots using RNA from a developing Physarum strain demonstrate that this fragmin isoform (fragmin A) is not expressed in plasmodia. In situ localization showed that fragmin A is present mainly underneath the plasma membrane. Our results indicate that Physarum amoebae express a fragmin P-like isoform which shares the property of binding actin and converting the latter into a substrate for the actin-fragmin kinase.  相似文献   

3.
The Physarum EGTA-resistant actin-fragmin complex, previously named cap 42(a+b), is phosphorylated in the actin subunit by an endogenous kinase [Maruta and Isenberg (1983) J. Biol. Chem., 258, 10151-10158]. This kinase has been purified and characterized. It is an 80 kDa monomeric enzyme, unaffected by known kinase regulators. Staurosporine acts as a potent inhibitor. The actin-fragmin complex is the preferred substrate. The phosphorylation is inhibited by micromolar Ca2+ concentrations, but only in the presence of additional actin. Polymerized actin (vertebrate muscle and non-muscle isoforms) and actin complexes with various actin-binding proteins are poorly phosphorylated. The heterotrimer consisting of two actins and one fragmin, which is formed from cap 42(a+b) and actin in the presence of micromolar concentrations of Ca2+, is also a poor substrate. From the other substrates tested, only histones were significantly phosphorylated, in particular histone H1. In the same manner, casein kinase I could also phosphorylate the actin-fragmin complex. The major phosphorylation site in actin is Thr203. A second minor site is Thr202. These residues constitute one of the contact sites for DNase I [Kabsch et al. (1990) Nature, 347, 37-44] and are also part of one of the predicted actin-actin contact sites in the F-actin model [Holmes et al. (1990) Nature, 347, 44-49].  相似文献   

4.
Tonoplast intrinsic protein (TIP) is a member of a family of putative membrane channels found in bacteria, animals, and plants. Plants have seed-specific, vegetative/reproductive organ-specific, and water-stress-induced forms of TIP. Here, we report that the seed-specific TIP is a phosphoprotein whose phosphorylation can be monitored in vivo by allowing bean cotyledons to take up [32P]orthophosphate and in vitro by incubating purified tonoplasts with γ-labeled [32P]ATP. Characterization of the in vitro phosphorylation of TIP indicates that a membrane-bound protein kinase phosphorylates TIP in a Ca2+-dependent manner. The capacity of the isolated tonoplast membranes to phosphorylate TIP declined markedly during seed germination, and this decline occurred well before the development-mediated decrease in TIP occurs. Phosphoamino acid analysis of purified, radiolabeled TIP showed that serine is the major, if not only, phosphorylated residue, and cyanogen bromide cleavage yielded a single radioactive peptide peak on a reverse-phase high-performance liquid chromatogram. Estimation of the molecular mass of the cyanogen bromide phosphopeptide by laser desorption mass spectroscopy led to its identification as the hydrophilic N-terminal domain of TIP. The putative phosphate-accepting serine residue occurs in a consensus phosphorylation site for serine/threonine protein kinases.  相似文献   

5.
6.
A serine/threonine protein kinase that is able to phosphorylate chloroplast-destined precursor proteins was purified from leaf extract of Arabidopsis thaliana and was identified by mass spectrometry. The protein kinase, encoded by AT2G17700, belongs to a small protein family comprising in addition AT4G35780 and AT4G38470. All three proteins were expressed heterologously in Escherichia coli and characterized with regard to their properties in precursor protein phosphorylation. They were able to phosphorylate several chloroplast-destined precursor proteins within their cleavable presequences. In contrast, a mitochondria-destined precursor protein was not a substrate for these kinases. For all three enzymes, the phosphorylation reaction was specific for ATP with apparent K(m) values between 14 and 67 microM. They did not utilize other NTPs nor were those able to compete for ATP in the reaction. An excess of ADP was able to inhibit ATP-dependent phosphorylation. Furthermore, all three kinases exhibited autophosphorylation. The protein kinases described here could represent subunits of a regulatory network involved in the cytosolic events of chloroplast protein import.  相似文献   

7.
8.
We previously observed that Ser378 in the heparin-binding domain of vitronectin becomes phosphorylated by a protein kinase in plasma upon addition of ATP and divalent cations. We now report that purified plasma vitronectin contains approximately 2.5 mol of phosphate per mol of protein and that vitronectin becomes phosphorylated during biosynthesis in human hepatoma (HepG2) cells. In vitro, rabbit muscle cAMP-dependent protein kinase specifically phosphorylates Ser378 in single-chain (75 kDa) vitronectin but does not phosphorylate the two-chain (65/10 kDa) form cleaved at Arg379. Heparin affects neither the time course nor the extent of phosphorylation of Ser378 at neutral pH. The extent of phosphorylation of Ser378 achieved with cAMP-dependent protein kinase (greater than or equal to 0.3 mol phosphate per mol vitronectin) is greater than that obtainable in plasma and should enable comparisons to be made of the activities of the native and phosphorylated forms.  相似文献   

9.
Coordinated temporal and spatial regulation of the actin cytoskeleton is essential for diverse cellular processes such as cell division, cell motility and the formation and maintenance of specialized structures in differentiated cells. In plasmodia of Physarum polycephalum, the F-actin capping activity of the actin-fragmin complex is regulated by the phosphorylation of actin. This is mediated by a novel type of protein kinase with no sequence homology to eukaryotic-type protein kinases. Here we present the crystal structure of the catalytic domain of the first cloned actin kinase in complex with AMP at 2.9 A resolution. The three-dimensional fold reveals a catalytic module of approximately 160 residues, in common with the eukaryotic protein kinase superfamily, which harbours the nucleotide binding site and the catalytic apparatus in an inter-lobe cleft. Several kinases that share this catalytic module differ in the overall architecture of their substrate recognition domain. The actin-fragmin kinase has acquired a unique flat substrate recognition domain which is supposed to confer stringent substrate specificity.  相似文献   

10.
CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.  相似文献   

11.
Purified protein kinase C phosphorylates microtubule-associated protein 2   总被引:9,自引:0,他引:9  
We have investigated actions of purified protein kinase C on microtubule- and microfilament-related proteins. Among the cytoskeletal proteins examined, microtubule-associated protein 2 (MAP2) was found to serve as a good substrate. Other cytoskeletal proteins, tubulin, fodrin, cofilin, tropomyosin, and 53,000-Da protein, were very poorly phosphorylated. The amino acid residues of MAP2 that were phosphorylated by the protein kinase C were almost exclusively serine. The peptide mapping analysis indicated that protein kinase C and cAMP-dependent protein kinase phosphorylate MAP2 differently. The ability of MAP2 to interact with actin was markedly reduced by this protein kinase C-mediated phosphorylation. These data raise the possibility that phosphorylation of MAP2 by activated protein kinase C may be involved in cell-surface signal transduction.  相似文献   

12.
N Ogawa  S Okumura  K Izui 《FEBS letters》1992,302(1):86-88
In C4 plants the activity of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is regulated by phosphorylation/dephosphorylation which is mediated by light/dark signals. The study using protein kinase inhibitors showed that the inhibition pattern of maize PEPC-protein kinase (PEPC-PK) is similar to that of myosin light chain kinase, a Ca(2+)-calmodulin-dependent PK. The kinase activity was also inhibited by EGTA and the inhibition was relieved by Ca2+. These results suggest that PEPC-PK is Ca(2+)-dependent in contrast with previous observations by other research groups.  相似文献   

13.
Actin kinase phosphorylates actin of fragmin-actin complex, resulting in the inactivation of the nucleation and capping activities of the complex. Fragmin-actin complex was prepared by a new purification procedure. Incubation with ATP caused inactivation of the purified complex and phosphorylation of actin of fragmin-actin complex. The detailed analysis of the complex by SDS-gel electrophoresis showed that actin kinase was co-purified with the fragmin-actin complex. Formation of such an association between actin kinase and substrate suggests that the kinase is localized on the fragmin-actin complex to efficiently regulate actin cytoskeletons.  相似文献   

14.
Summary A cystosolic protein kinase that phosphorylates pyruvate kinase (PK) in vitro has been identified in crude homogenates of heart, radular retractor, and foot muscle from the anoxia-tolerant marine whelk Busycon canaliculatum. Protein kinase action was measured by following changes in PK kinetic parameters: phosphorylated PK has a higher K m value for phosphoenolpyruvate and a lower I50 value for l-alanine. The crude protein kinase readily phosphorylated PK in a Mg2+-and ATP-dependent manner in the absence of any added effector. This activity was not affected by the addition of either cAMP (a stimulator of protein kinase A) or Ca2+ plus phorbol 12-myristate 13-acetate (stimulators of protein kinase C) to the incubation medium. Addition of cGMP to the homogenate, however, increased the rate of PK phosphorylation giving a 3–4-fold increase in the rate of change in PK kinetic parameters that was readily apparent after 5h. Complete time-courses of changes in PK kinetic parameters in the presence and absence of cGMP showed that cGMP increased the rate, but not the final extent, of PK phosphorylation. These results indicate that PK inactivation by enzyme phosphorylation in response to anoxia in whelk tissues may be mediated by a cyclic GMP stimulated protein kinase in response to changing levels of cGMP. This conclusion was further supported by data indicating that the total activity of protein kinase was the same in both anoxic and aerobic animals, and that the total PK phosphatase activity was also constant. Changes in PK phosphorylation during anoxia are not, therefore, the result of changes in the total amount of protein kinase or phosphatase.Abbreviations cAMP adenosine 3:5-monophosphate - cGMP guanosine 3:5-monophosphate - PK pyruvate kinase - PMA phorbol 12-myristate, 13-acetate - PEP phosphoenolpyruvate - K m Michaelis constant - I 50 inhibitor concentration that reduces enzyme activity by 50%  相似文献   

15.
A 1591-bp cDNA of a serine-rich protein kinase (SRPK)-Iike protein has been identified in Physarum polycephalum (GenBank accession No. DQ140379). The cDNA contains two repeat sequences at bp 1-153 and bp 395-547. The encoding sequence is 56% homologous to human SRPK1 and is named Physarum SRPK (PSRPK). Consistent with other SRPKs, the consensus motifs of PSRPK are within the two conserved domains (CDs). However, divergent motifs between the N-terminal and CDs are much shorter than the corresponding sequences of other SRPKs. To study the structure and function of this protein, we performed co-expression experiment in Escherichia coli and in vitro phosphorylation assay to investigate the phosphorylation effect of recombinant PSRPK on the human SR protein, ASF/SF2. Western blot analysis showed that PSRPK could phosphorylate ASF/SF2 in E. coil cells. Autoradiographic examination showed that both recombinant PSRPK and a truncated form of PSRPK with a 28-aa deletion at the N-terminus could phosphorylate ASF/SF2 and a truncated form of ASF/SF2 that contains the RS domain. However, these two forms of PSRPK could not phosphorylate a truncated form ASF/SF2 that lacks the RS domain. A truncated form of PSRPK that lacks either of CDs does not have any phosphorylation activity. These results indicated that, like other SRPKs, the phosphorylation site in PSRPK is located within the RS domain of the SR protein and that its phosphorylation activity is closely associated with the two CDs. This study on the structure and function of PSRPK demonstrates that it is a new member of the SRPK family.  相似文献   

16.
cGMP-dependent protein kinase phosphorylates and inactivates RhoA   总被引:15,自引:0,他引:15  
Small GTPase Rho and cGMP/cGMP-dependent protein kinase (cGK) pathways exert opposing effects in specific systems such as vascular contraction and growth. However, the direct interaction between these pathways has remained elusive. We demonstrate that cGK phosphorylates RhoA in vitro at Ser188, the same residue phosphorylated by cAMP-dependent protein kinase. In HeLa cells transfected with constitutively active cGK (C-cGK), stress fiber formation induced by lysophosphatidic acid or V14RhoA was blocked. By contrast, C-cGK failed to inhibit stress fiber formation in cells transfected with mutant RhoA with substitution of Ser188 to Ala. C-cGK did not affect actin reorganization induced by Rac1 or Rho-associated kinase, one of the effectors for RhoA. Furthermore, C-cGK expression inhibited the membrane translocation of RhoA. Collectively, our findings suggest that cGK phosphorylates RhoA at Ser188 and inactivates RhoA signaling. The physiological relevance of the direct interaction between RhoA and cGK awaits further investigation.  相似文献   

17.
The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2(D239A)) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2(D239A) also suppressed the lethality of tor2Delta cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Delta cells. In contrast, Ypk2(D239A) has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.  相似文献   

18.
The evolutionarily conserved Orm1 and Orm2 proteins mediate sphingolipid homeostasis. However, the homologous Orm proteins and the signaling pathways modulating their phosphorylation and function are incompletely characterized. Here we demonstrate that inhibition of nutrient-sensitive target of rapamycin complex 1 (TORC1) stimulates Orm phosphorylation and synthesis of complex sphingolipids in Saccharomyces cerevisiae. TORC1 inhibition activates the kinase Npr1 that directly phosphorylates and activates the Orm proteins. Npr1-phosphorylated Orm1 and Orm2 stimulate de novo synthesis of complex sphingolipids downstream of serine palmitoyltransferase. Complex sphingolipids in turn stimulate plasma membrane localization and activity of the nutrient scavenging general amino acid permease 1. Thus activation of Orm and complex sphingolipid synthesis upon TORC1 inhibition is a physiological response to starvation.  相似文献   

19.
A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase IIA has been partially purified and characterized. The kinase has a native molecular weight of about 200 kilodaltons. This kinase utilizes Mg2+ and ATP and transfers about 20 phosphates to the heptapeptide repeats Pro-Thr-Ser-Pro-Ser-Tyr-Ser in the carboxyl-terminal domain of the 220-kilodalton subunit of soybean RNA polymerase II. This phosphorylation results in a mobility shift of the 220-kilodalton subunits of a variety of eukaryotic RNA polymerases to polypeptides ranging in size from greater than 220 kilodaltons to 240 kilodaltons on sodium dodecyl sulfate-polyacrylamide gels. The phosphorylation is highly specific to the heptapeptide repeats since a degraded subunit polypeptide of 180 kilodaltons that lacks the heptapeptide repeats is poorly phosphorylated. Synthetic heptapeptide repeat multimers inhibit the phosphorylation of the 220-kilodalton subunit.  相似文献   

20.
This study describes a method for the identification of the substrates of specific serine kinases. An antibody specific for the phosphomotif generated by the kinase is used to isolate phosphorylated substrates by immunoprecipitation, and the isolated proteins are identified by tandem mass spectrometry of peptides. This method was applied to the identification of substrates for the protein kinase Akt, which specifically phosphorylates the RXRXXS/T motif. 3T3-L1 adipocytes were treated with insulin to activate Akt, and the putative Akt substrate proteins were isolated by immunoprecipitation with an antibody against the phospho form of this motif. This led to the identification of a novel 160-kDa substrate for Akt. The 160-kDa substrate for Akt, which was designated AS160, has a Rab GAP domain. Recombinant AS160 was shown to be a substrate for Akt, and two sites of phosphorylation, both in RXRXXS/T motifs, were identified by mass spectrometry and mutation. Insulin treatment of adipocytes caused AS160 to redistribute from the low density microsomes to the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号