首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J Puurunen  H Karppanen 《Life sciences》1975,16(10):1513-1520
The effect of ethanol on the secretion of gastric acid and the content of cyclic AMP of the gastric mucosa was studied in rats. Intravenously, ethanol (10 to 800 mg/kg) had no effect on the output of acid. Upon local application into the stomach, ethanol (1 to 10%) caused a concentration-dependent inhibition of the output of gastric acid. The effect was evident within 5 min. At the concentration of 1 %,ethanol decreased the rate of acid secretion maximally by about 30%. At the concentration of 3 %, the maximal inhibition was about 70 %. At the concentration of 10 %, ethanol caused a total cessation of the output of acid within 20 to 60 min.Five and 25 min after the administration of 10 % ethanol into the stomach, the gastric mucosal content of cyclic AMP was decreased by approximately 50 %. Also in vitro, the mucosal content of cyclic AMP was decreased by ethanol within 5 min. The decrease was about 30 % with 2.5 % ethanol, approximately 60 % with 10 % ethanol, and approximately 45 % with 20 % ethanol. Alcohol inhibited the activity of the cyclic AMP phosphodiesterase of the gastric mucosa in a competitive manner. The Ki-value was 0.16 M which would correspond to an alcohol concentration of 9.1 % (v/v). Ethanol caused a concentration-dependent inhibition of the activity of the gastric mucosal adenyl cyclase. By 0.166 M (9.4 %) alcohol the inhibition was nearly 100 %.It is concluded that the ethanol-induced decrease of cyclic AMP in the gastric mucosa is due to a decreased formation of the nucleotide. The accompanying inhibition of the output of acid by ethanol is consistent with the view that cyclic AMP is an intracellular regulator of the gastric acid secretion. In view of the role of cyclic AMP in the control of the integrity of the cells, it is suggested that the ethanol-induced damage of gastric mucosa might also be, at least partly, due to the decreased mucosal content of cyclic AMP.  相似文献   

3.
Inactivation of histamine by gastric mucosal tissue was examined in dispersed rabbit gastric mucosal cells. Mucosal cells were incubated with [14C]histamine. The formed radioactive metabolites were separated and identified by thin layer co-chromatography and quantitated, in both the cellular and extracellular mediums. Gastric mucosal cells internalized histamine, most of which was immediately methylated primarily to N tau-methylhistamine and released. Cellular histamine product accumulation reached a plateau. The rate of histamine methylation increased with increasing extracellular histamine concentration, moving towards a plateau above 5 microM. Histamine methylation was greatly decreased but not abolished at 4 degrees C, in the absence of Na+ and by phlorizin (0.5 mM), an inhibitor of Na(+)-dependent co-transport. Inhibition of histamine N-methyltransferase decreased intracellular methylhistamine content dose dependently without increasing intracellular histamine. The secretagogues pentagastrin and carbachol did not influence histamine metabolism but ethanol inhibited methylation. The data suggest that gastric mucosal cells take up histamine by a Na(+)-dependent and Na(+)-independent process. The histamine uptake capacity appears to be linked to the methylation activity within the cell. The decrease in histamine uptake and metabolism caused by ethanol could potentially increase histamine concentrations near the target cells and be the reason for the stimulatory effect of ethanol on acid secretion.  相似文献   

4.
Using an improved spectrophotometer, we have reinvestigated the report (Hersey, S.J. (1974) Biochim. Biophys. Acta 344, 157--203) that acidification of the mucosal surface of frog gastric mucosa produces a crossover point between flavoprotein and cytochrome b, thus identifying a site of energy coupling between the cytochrome and H+ transport systems. While we find spectrophotometric changes upon addition of HCl to the mucosal solution, we find similar changes upon addition of NaCl without pH change, but no changes when the pH is lowered by substitution of H+ for Na+ at constant osmolality. We show that osmolality changes, with consequent alteration in tissue light scattering, are responsible for these effects. Further, we can show that the pH changes used do not inhibit acid secretion, and that one cannot do so without osmolality increase. We conclude that the imputed crossover point is not demonstrated, and that models based on its existence must be revised.  相似文献   

5.
The acid-secreting gastric mucosa resists intraluminal acid better than the nonsecreting. Here we investigated pH at the epithelial cell surface, mucosal permeability, and blood flow during intraluminal administration of acid (100 mM) in acid-stimulated and nonstimulated gastric corpus mucosae. Surface pH (H(+)-selective microelectrodes), permeability (clearance of (51)Cr-EDTA), and mucosal blood flow (laser-Doppler flowmetry) were studied in Inactin-anesthetized rats. Acid secretion was stimulated with pentagastrin (40 microg. kg(-1). h(-1)) or impromidine (500 microg. kg(-1). h(-1)), or HCO(3)(-) (5 mmol. kg(-1). h(-1)) given intravenously. Surface pH was only slightly reduced by intraluminal acid in acid secretion-stimulated or HCO(3)(-)-treated rats but was substantially lowered in nonstimulated rats. Clearance increased threefold and blood flow increased by approximately 75% in nonstimulated rats. During stimulated acid secretion or intravenous infusion of HCO(3)(-), clearance was unchanged and blood flow increased by only approximately 30% during intraluminal acid. Increased epithelial transport of HCO(3)(-) buffering the mucus gel is most probably the explanation for the acid-secreting mucosa being less vulnerable to intraluminal acid than the nonsecreting.  相似文献   

6.
7.
The stomach is in a state of continuous exposure to potentially hazardous agents. Hydrochloric acid together with pepsin constitutes a major and serious threat to the gastric mucosa. Reflux of alkaline duodenal contents containing bile and pancreatic enzymes are additional important injurious factors of endogenous origin. Alcohol, cigarette smoking, drugs and particularly aspirin and aspirin-like drugs, and steroids are among exogenous mucosal irritants that can inflict mucosal injury. The ability of the stomach to defend itself against these noxious agents has been ascribed to a number of factors constituting the gastric mucosal defense. These include mucus and bicarbonate secreted by surface epithelial cells, prostaglandins, sulfhydryl compounds and gastric mucosal blood flow. The latter is considered by several researchers to be of paramount importance in maintaining gastric mucosal integrity. The aim of this paper is to review the experimental and clinical data dealing with the role of mucosal blood flow and in particular the microcirculation in both damage and protection of the gastric mucosa.  相似文献   

8.
Using an improved spectrophotometer, we have reinvestigated the report (Hersey, S.J. (1974) Biochim. Biophys. Acta 344, 157–203) that acidification of the mucosal surface of frog gastric mucosa produces a crossover point between flavoprotein and cytochrome b, thus identifying a site of energy coupling between the cytochrome and H+ transport systems. While we find spectrophotometric changes upon addition of HCl to the mucosal solution, we find similar changes upon addition of NaCl without pH change, but no changes when the pH is lowered by substitution of H+ for Na+ at constant osmolality. We show that osmolality changes, with consequent alteration in tissue light scattering, are responsible for these effects. Further, we can show that the pH changes used do not inhibit acid secretion, and that one cannot do so without osmolality increase. We conclude that the imputed crossover point is not demonstrated, and that models based on its existence must be revised.  相似文献   

9.
Neurotensin stimulates pancreatic secretion directly and by potentiating the effect of secretin. Neurotensin also inhibits gastric secretion. Secretin inhibits gastric secretion as well, but whether it also interacts with neurotensin is not known. Secretin is known to inhibit gastric mucosal blood flow (GMBF). The effect of neurotensin on GMBF is not known. Acid secretion (triple lumen perfused orogastric tube) and GMBF ([14C]aminopyrine clearance) were therefore measured in 6 subjects during neurotensin, secretin and neurotensin plus secretin infusions. Neurotensin plus secretin reduced acid secretion by a median 130 (range 34-394) mumol/min which was significantly greater than either neurotensin at 36 (7-67) mumol/min or secretin 54 (20-347) mumol/min alone (P less than 0.05). This effect appeared independent of GMBF. Neurotensin plus secretin reduced GMBF by 14 (12-27) ml/min but not significantly more than neurotensin at 11 (3-20) ml/min or secretin 18 (2-27) ml/min alone. Further, there was no correlation between changes in acid output and GMBF during infusion of the peptides. We conclude that the inhibitory effects of neurotensin and secretin on gastric secretion are at least additive and together they may function as an 'enterogastrone'.  相似文献   

10.
《Life sciences》1994,54(16):PL261-PL264
Dopamine and its agonists modulate a variety of gastrointestinal functions. In light of the increasing attention directed toward novel dopamine receptors and compounds that are active at these sites, we examined the effects of a dopamine D4 antagonist and putative antipsychotic, clozapine, in a model of conscious basal gastric acid secretion and in a model of stress-induced gastric mucosal injury. At a dose of 10.0 mg/kg i.p., clozapine significantly inhibited basal gastric acid secretion by 84% relative to vehicle. Lower doses (2.5 and 5.0 mg/kg) were inactive. Doses of 2.5, 5.0 and 7.5 mg/kg i.p. all significantly reduced restraint stress-induced gastric mucosal injury in rats. The highest dose inhibited gastric lesions by 70% relative to vehicle. We conclude that dopamine D4 receptors, present in high concentrations in mesolimbic brain regions, modulate gastric function and pathology in addition to mesolimbic D1 receptors, whose role in gastrointestinal function is already established.  相似文献   

11.
In pylorus-ligated rats subcutaneous (sc) pentagastrin (325.5 nmol/kg) or histamine (54.3 μmol/kg), but not the cholinergic linergic agent bethanechol (7.6 or 15.2 μmol/kg), increased gastric mucosal injury by sc indomethacin (55.8 μmol/kg). Intragastric (ig) administration of 0.15 or 0.3 N HCl greatly potentiated injury by sc indomethacin with widespread ulceration, intragastric bleeding and even perforation. The gastric mucosal damage produced by indomethacin plus 0.3 N HCl was reduced by ig capsaicin (3.1–25.1 μM), ig resiniferatoxin (0.38-6.1 μM), by sc atropine (0.15-1.2 μmol/kg) and to a lesser extent by ig prostacyclin (40–267 μM) or sc cimetidine (198.2 μmol/kg). The protective effect of capsaicin or resiniferatoxin was not prevented by atropine or cimetidine treatment. Capsaicin (6.5 mM) enhanced gastric injury by sc or ig indomethacin. Results indicate the importance of early vascular events in the pathogenesis of mucosal injury induced by indomethacin in the stomach and suggest a role for gastric acid in potentiation of such injury. Results further strengthen the idea of a protective role for capsaicin-sensitive sensory nerves in the stomach.  相似文献   

12.
The correlation between serum gastrin levels and gastric acid secretion during 4 weeks of cimetidine administration (once daily) was investigated. Serum gastrin levels and gastric acid secretion were estimated on the 7th, 14th, 21st and 28th day after cimetidine administration (25 mg.kg-1, intragastrically). At the mentioned time intervals gastric acid secretion stimulated by histamine and pentagastrin was also studied. It was found that on the 14th and 21st day after cimetidine administration serum gastrin levels were significantly elevated. Basal gastric acid secretion after cimetidine administration was significantly decreased at all the observed time intervals. Histamine-stimulated gastric acid secretion was increased on the 14th, 21st and 28th day after cimetidine administration. Hypoacidity was not followed at all time intervals by hypergastrinaemia (only on day 14 and 21 after cimetidine).  相似文献   

13.
To investigate the role of central noradrenaline (NA) in gastric functions, changes in mucosal blood flow (MBF) and acid secretion following electrical stimulation of the lateral hypothalamic area (LHA) and the effects of NA on these parameters were examined in rats anesthetized with urethane. NA 10 μg/animal injected into the lateral ventricle decreased the basal value of both the gastric MBF and acid output, while the same dose of acetycholine or dopamine was without effect. Repetitive electrical stimulation of LHA at 10 cycles/sec, 0.5 mA, 2 msec for 10 min elicited a significant, reproducible increase in both gastric MBF and acid output. NA 10 μg/animal injected into the lateral ventricle completely blocked these increases induced by the electrical stimulation. These data suggest that a central noradrenergic inhibitory mechanism is involved in regulation of the gastric MBF and acid secretion.  相似文献   

14.
The role of Campylobacter pyloridis, a spiral bacteria associated with gastritis and peptic ulcers in weakening the mucus component of gastric mucosal barrier was investigated. The colonies of bacteria, cultured from antral mucosal biopsies of patients undergoing gastroscopy, were washed with saline, passed through sterilization filter and the filtrate was examined for protease and glycosylhydrolase activities. The obtained results revealed that the filtrate exhibited a strong proteolytic activity not only towards the typical protein substrates such as albumin but also towards gastric mucin. Optimum enzymatic activity for degradation of mucin was attained at pH 7.0 and the protease activity was found in a low m.w. (less than 50K) protein fraction. The filtrate showed little glycosylhydrolase activity and did not cause the hydrolysis of mucin carbohydrates. The data suggest that C pyloridis infection weakens the gastric mucosal defense by causing proteolytic degradation of mucin component of the protective mucus layer.  相似文献   

15.
BACKGROUND: Our laboratory group observed earlier that the gastric mucosal cytoprotective effect of prostacyclin (PGI(2)) disappeared after surgical vagotomy in rats. Similarly to this, the beta-carotene induced gastric cytoprotection disappeared in adrenalectomized rats too. AIMS: In these studies we aimed to investigate the possible role of vagal nerve and adrenals in the development of gastric mucosal lesions induced by exogenously administered chemicals (ethanol, HCl, NaOH, NaCl and indomethacin), and on the effects of cytoprotective and antisecretory drugs (atropine, cimetidine), and scavengers (vitamin A and beta-carotene). METHODS: The observations were carried out in fasted CFY strain rats. The gastric mucosal lesions were produced by intragastric (i.g.) administration of narcotising agents (96% ethanol; 0.6 M HCl; 0.2 M NaOH; 25% NaCl) or subcutaneously (s.c.) administered indomethacin (20 mg/kg) in intact, surgically bilaterally vagatomized, and adrenalectomized rats without or with glucocorticoid supplementation (Oradexon, 0.6 mg/kg given i.m. for 1 week). The gastric mucosal protective effect of antisecretory doses of atropine (0.1-0.5-1.0 mg/kg i.g.) and cimetidine (10-25-50 mg/kg i.g.), and vitamin A and beta-carotene (0.01-0.1-1.0-10 mg/kg i.g.) was studied. The number and severity of mucosal gastric lesions was numerically or semiquantitatively measured. In other series of observations the gastric acid secretion and mucosal damage were studied in 24 h pylorus-ligated rats without and with acute bilateral surgical vagotomy. RESULTS: It was found that: (1) the chemical-induced gastric mucosal damage was enhanced in vagotomized and adrenalectomized rats, meanwhile the endogenous secretion of gastric acid, and the development of mucosal damage can be prevented by surgical vagotomy; (2) the gastric cyto- and general protection produced by the drugs and scavengers disappeared in vagotomized and adrenalectomized rats; (3) the gastric mucosal protective effects of drugs and of scavengers returned after sufficient glucocorticoid supplementation of the rats. CONCLUSION: It has been concluded that the intact vagal nerve and adrenals have a key role in the gastric mucosal integrity, and in drugs- and scavengers-induced gastric cyto- and general mucosal protection.  相似文献   

16.
The advent of the H2-histamine-receptor antagonists has given new life to the old hypothesis that histamine might be the final common chemical mediator of acid secretion. The available evidence, however, does not prove this hypothesis but does confer on histamine a role in the regulation of acid secretion in normal physiology. Evidence is mounting that, in addition to its stimulatory action, the vagus may play an inhibitory role in acid secretion and gastrin release. Our concepts of the gastric phase of acid secretion have been extended by the discovery of cross distension reflexes in the stomach: the pyloro-oxyntic reflex for acid secretion and the oxyntopyloric reflex for gastrin release. In addition, digested protein has been shown to stimulate directly the oxyntic gland mucosa, but the evidence is against a role for this mechanism in the intact stomach. The hormone(s) responsible for the intestinal phase have not been isolated but the physiological characteristics of entero-oxyntin (a nongastrin, enteric substance that acts on the oxyntic cell) have been defined. Gastric inhibitory polypeptide is an excellent candidate for the entero-gastrone released by fat, but whether it is the sole enterogastrone released is yet to be determined.  相似文献   

17.
18.
The role of the vagus nerve in the control of gastrin releasing peptide (GRP) stimulated gastroenteropancreatic hormone release and gastric acid secretion was investigated in four conscious gastric fistula dogs using a technique of bilateral cryogenic vagal blockade. A 90-min infusion of GRP at a dose of 400 pmol X kg-1. h-1 produced significant elevations in plasma levels of gastrin, motilin, GIP, enteroglucagon, insulin, pancreatic glucagon, pancreatic polypeptide and VIP. Vagal blockade reversibly inhibited the rise of plasma PP and significantly blunted the elevation of plasma VIP. However, the GRP stimulated response of the other hormones investigated was not modified by vagal blockade. Similarly, the substantial secretion of gastric acid observed with GRP was not influenced by vagal blockade. Thus GRP acts predominantly via mechanisms which are independent of vagal integrity, findings that are in support of a major role for the local neuromodulation of hormone release and gastric acid secretion.  相似文献   

19.
20.
《Journal of Physiology》1997,91(3-5):189-197
There exists a considerable controversy in the literature with regard to the effect of either opiate receptor blockade or that of morphine in different gastric and intestinal ulcer models in the rat. We performed experiments to evaluate the effects of naloxone and morphine on gastric acid secretion and gastric mucosal damage in different experimental models of gastric mucosal injury, namely in indomethacin-, HCl (0.6N)- and ethanol (96%)-models. We found that: 1) 10 mg/kg naloxone ip given twice, effectively protected gastric mucosa against indomethacin (30 mg/kg ip) and against the acid-dependent injury caused by 0.6 N HCl (1 mL ig), but not against the non acid-dependent injury caused by 96% ethanol (1 mL ig); 2) morphine (10 + 10 mg/kg ip) increased ulcers in the HCl-model, but had no effect in the two other models; 3) this ulcer-aggravating effect of morphine in the HCl-model was blocked by pretreatment of 2 mg/kg ip naloxone; and 4) both naloxone (5 + 5 and 10 + 10 mg/kg ip) significantly decreased gastric acid secretion in 1-h pylorus ligated rats. We conclude that: 1) naloxone dose-dependently protects against the indomethacin- and HCl-, but not against the ethanol-induced gastric mucosal damage; 2) morphine aggravates the HCl-induced ulcerogenesis; and 3) both opiod receptor agonist and antagonist decrease gastric acid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号