首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoactive yellow protein (PYP) is a bacterial photoreceptor which is the structural prototype for the PAS domain superfamily of regulators and receptors. PYP is known to have a unique p-hydroxycinnamic acid chromophore, covalently attached to a cysteine. To date, it has not been shown how holo-PYP is formed in vivo. Two genes, nearby pyp, were postulated to encode the biosynthetic enzymes, but only one was previously isolated and shown to have the requisite activity. By using a dual plasmid system, one expressing the PYP from Halorhodospira halophila and the other expressing a two-gene operon, consisting of tyrosine ammonia lyase and p-hydroxycinnamic acid ligase, we are able to present evidence that a functionally active holo-PYP can be synthesized in Escherichia coli. Plasmids containing only one of the two enzymes failed to produce holoprotein. Thus, the two genes have been shown to be both necessary and sufficient for production of holoprotein, although the activating group remains unknown. This expression system not only holds great potential for mutagenesis studies but also opens new possibilities in the search for (a) signaling partner(s) of the PYP.  相似文献   

2.
A gene for photoactive yellow protein (PYP) was identified from the genome sequence of the extremely halophilic aerobic bacterium Salinibacter ruber (Sr). The sequence is distantly related to the prototypic PYP from Halorhodospira halophila (Hh) (37% identity) and contains most of the amino acid residues identified as necessary for function. However, the Sr pyp gene is not flanked by its two biosynthetic genes as in other species. To determine as to whether the Sr pyp gene encodes a functional protein, we cloned and expressed it in Escherichia coli, along with the genes for chromophore biosynthesis from Rhodobacter capsulatus. The Sr PYP has a 31-residue N-terminal extension as compared to other PYPs that appears to be important for dimerization; however, truncation of these extra residues did not change the spectral and photokinetic properties. Sr PYP has an absorption maximum at 431 nm, which is at shorter wavelengths than the prototypical Hh PYP (at 446 nm). It is also photoactive, being reversibly bleached by either blue or white light. The kinetics of dark recovery is slower than any of the PYPs reported to date (4.27 x 10(-4) s(-1) at pH 7.5). Sr PYP appears to have a normal photocycle with the I1 and I2 intermediates. The presence of the I2' intermediate is also inferred on the basis of the effects of temperature and alchohol on recovery. Sr PYP has an intermediate spectral form in equilibrium with the 431 nm form, similar to R. capsulatus PYP and the Y42F mutant of Hh PYP. Increasing ionic strength stabilizes the 431 nm form at the expense of the intermediate spectral form, and the kinetics of recovery is accelerated 6.4-fold between 0 and 3.5 M salt. This is observed with ions from both the chaotropic and the kosmotropic series. Ionic strength also stabilizes PYP against thermal denaturation, as the melting temperature is increased from 74 degrees C in buffer alone to 92 degrees C in 2 M KCl. Sr accumulates KCl in the cytoplasm, like Halobacterium, to balance osmotic pressure and has very acidic proteins. We thus believe that Sr PYP is an example of a halophilic protein that requires KCl to electrostatically screen the excess negative charge and stabilize the tertiary structure.  相似文献   

3.
Light-activation of the PAS domain protein photoactive yellow protein (PYP) is believed to trigger a negative phototactic response in the phototropic bacterium Halorhodospira halophila. To investigate transient conformational changes of the PYP photocycle, we utilized the PYP mutant M100L that displays an increased lifetime of the putative signaling-state photointermediate PYP(M) by 3 orders of magnitude, as previously reported for the M100A mutant [Devanathan, S., Genick, U. K., Canestrelli, I. L., Meyer, T. E., Cusanovich, M. A., Getzoff, E. D., and Tollin, G. Biochemistry (1998) 37, 11563-11568]. The FTIR difference spectrum of PYP(M) and the ground state of M100L demonstrated extensive peptide-backbone structural changes as observed in the FTIR difference spectrum of the wild-type protein and PYP(M). The conformational change investigated by CD spectroscopy in the far-UV region showed reduction of the alpha-helical content by approximately 40%, indicating a considerable amount of changes in the secondary structure. The optical activity of the p-coumaric acid chromophore completely vanished upon PYP(M) in contrast to the dark state, indicating deformation of the binding pocket structure in PYP(M). The tertiary structural changes were further monitored by small-angle X-ray scattering measurements, which demonstrated a significant increase of the radius of gyration of the molecule by approximately 5% in PYP(M). These structural changes were reversed concomitantly with the chromophore anionization upon the dark state recovery. The observed changes of the quantities provided a more vivid view of the structural changes of the mutant PYP in going from PYP(M) to PYP(dark), which can be regarded as a process of folding of the secondary and the tertiary structures of the "PAS" domain structure, coupled with the p-coumaric acid chromophore deprotonation and isomerization.  相似文献   

4.
5.
Molecular dynamics simulation techniques together with time-dependent density functional theory calculations have been used to investigate the effect of photon absorption by a 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. The calculations suggest that the protein not only modifies the absorption spectrum of the chromophore but also regulates the subsequent isomerization of the chromophore by stabilizing the isomerization transition state. Although signaling from PYP is thought to involve partial unfolding of the protein, the mechanical effects accompanying isomerization do not appear to directly destabilize the protein.  相似文献   

6.
The blue light receptor photoactive yellow protein (PYP) displays rhodopsin-like photochemistry based on the trans to cis photoisomerization of its p-coumaric acid chromophore. Here, we report that protein refolding from the acid-denatured state of PYP mimics the last photocycle transition in PYP. This implies a direct link between transient protein unfolding and photosensory signal transduction. We utilize this link to study general issues in protein folding. Chromophore trans to cis photoisomerization in the acid-denatured state strongly decelerates refolding, and converts the pH dependence of the barrier for refolding from linear to nonlinear. We propose transition state movement to explain this phenomenon. The cis chromophore significantly stabilizes the acid-denatured state, but acidification of PYP results in the accumulation of the acid-denatured state containing a trans chromophore. This provides a clear example of kinetic control in a protein unfolding reaction. These results demonstrate the power of PYP as a light-triggered model system to study protein folding.  相似文献   

7.
Photoactive yellow protein (PYP) is a bacterial blue light sensor that induces Halorhodospira halophila to swim away from intense blue light. Light absorption by PYP's intrinsic chromophore, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. Here we describe the initial structural changes of the chromophore and its nearby amino acids, using visible pump/mid-infrared probe spectroscopy. Upon photoexcitation, the trans bands of the chromophore are bleached, and shifts of the phenol ring bands occur. The latter are ascribed to charge translocation, which probably plays an essential role in driving the trans to cis isomerization process. We conclude that breaking of the hydrogen bond of the chromophore's C=O group with amino acid Cys69 and formation of a stable cis ground state occur in approximately 2 ps. Dynamic changes also include rearrangements of the hydrogen-bonding network of the amino acids around the chromophore. Relaxation of the coumaryl tail of the chromophore occurs in 0.9-1 ns, which event we identify with the I(0) to I(1) transition observed in visible spectroscopy.  相似文献   

8.
A gene for photoactive yellow protein (PYP) was previously cloned from Rhodobacter capsulatus (Rc), and we have now found it to be associated with genes for gas vesicle formation in the recently completed genome sequence. However, the PYP had not been characterized as a protein. We have now produced the recombinant RcPYP in Escherichia coli as a glutathione-S-transferase (GST) fusion protein, along with the biosynthetic enzymes, resulting in the formation of holo-RcPYP following cleavage of the GST tag. The absorption spectrum (with characteristic peaks at 435 and 375 nm) and the photocycle kinetics, initiated by a laser flash at 445 nm, are generally similar to those of Rhodobacter sphaeroides (RsPYP) but are significantly different from those of the prototypic PYP from Halorhodospira halophila (HhPYP), which has a single peak at 446 nm and has slower recovery. RcPYP also is photoactive when excited with near-ultraviolet laser light, but the end point is then above the preflash baseline. This suggests that some of the PYP chromophore is present in the cis-protonated conformation in the resting state. The excess 435 nm form in RcPYP, built up from repetitive 365 nm laser flashes, returns to the preflash baseline with an estimated half-life of 2 h, which is markedly slower than that for the same reaction in RsPYP. Met100 has been reported to facilitate cis-trans isomerization in HhPYP, yet both Rc and RsPYPs have Lys and Gly substitutions at positions 99 and 100 (using HhPYP numbering throughout) and have 100-fold faster recovery kinetics than does HhPYP. However, the G100M and K99Q mutations of RcPYP have virtually no effect on kinetics. Apparently, the RcPYP M100 is in a different conformation, as was recently found for the PYP domain of Rhodocista centenaria Ppr. The cumulative results show that the two Rhodobacter PYPs are clearly distinct from the other species of PYP that have been characterized. These properties also suggest a different functional role, that we postulate to be in regulation of gas vesicle genes, which are known to be light-regulated in other species.  相似文献   

9.
Analysis of the photoactive yellow protein (pyp) gene region of Rhodobacter sphaeroides has revealed the presence of an additional open reading frame, orfD, that had not previously been identified. Here we report the location of this new gene and the predicted amino acid sequence of the encoded protein. The translation product resembles a group of small cytochrome b-like proteins, including Escherichia coli cytochrome b(561), R. sphaeroides cytochrome b(562), and two new cytochrome b(561)-like proteins identified using the E. coli genome sequence, for which functions have not yet been established. To determine OrfD function in R. sphaeroides, an orfD mutant was constructed. The OrfD mutant exhibited growth rates and yields very similar to those of the wild-type strain when grown under a variety of growth conditions. Respiration rates, reduced-minus-oxidised spectra and levels of photosynthetic complexes were also very similar in the two strains. Although the role of OrfD was therefore not determined here, we demonstrate that the orfD gene is expressed in R. sphaeroides under aerobic, semi-aerobic and photosynthetic growth conditions.  相似文献   

10.
The bacterial photoreceptor protein photoactive yellow protein (PYP) covalently binds the chromophore 4-hydroxy coumaric acid, tuning (spectral) characteristics of this cofactor. Here, we study this binding and tuning using a combination of pointmutations and chromophore analogs. In all photosensor proteins studied to date the covalent linkage of the chromophore to the apoprotein is dispensable for light-induced catalytic activation. We analyzed the functional importance of the covalent linkage using an isosteric chromophore-protein variant in which the cysteine is replaced by a glycine residue and the chromophore by thiomethyl-p-coumaric acid (TMpCA). The model compound TMpCA is shown to weakly complex with the C69G protein. This non-covalent binding results in considerable tuning of both the pKa and the color of the chromophore. The photoactivity of this system, however, was strongly impaired, making PYP the first known photosensor protein in which the covalent linkage of the chromophore is of paramount importance for the functional activity of the protein in vitro. We also studied the influence of chromophore analogs on the color and photocycle of PYP, not only in WT, but especially in the E46Q mutant, to test if effects from both chromophore and protein modifications are additive. When the E46Q protein binds the sinapinic acid chromophore, the color of the protein is effectively changed from yellow to orange. The altered charge distribution in this protein also results in a changed pKa value for chromophore protonation, and a strongly impaired photocycle. Both findings extend our knowledge of the photochemistry of PYP for signal generation.  相似文献   

11.
The fluorescence decays of several analogues of the photoactive yellow protein (PYP) chromophore in aqueous solution have been measured by femtosecond fluorescence up-conversion and the corresponding time-resolved fluorescence spectra have been reconstructed. The native chromophore of PYP is a thioester derivative of p-coumaric acid in its trans deprotonated form. Fluorescence kinetics are reported for a thioester phenyl analogue and for two analogues where the thioester group has been changed to amide and carboxylate groups. The kinetics are compared to those we previously reported for the analogues bearing ketone and ester groups. The fluorescence decays of the full series are found to lie in the 1-10 ps range depending on the electron-acceptor character of the substituent, in good agreement with the excited-state relaxation kinetics extracted from transient absorption measurements. Steady-state photolysis is also examined and found to depend strongly on the nature of the substituent. While it has been shown that the ultrafast light-induced response of the chromophore in PYP is controlled by the properties of the protein nanospace, the present results demonstrate that, in solution, the relaxation dynamics and pathway of the chromophore is controlled by its electron donor-acceptor structure: structures of stronger electron donor-acceptor character lead to faster decays and less photoisomerisation.  相似文献   

12.
Two complementary aspects of the thermodynamics of the photoactive yellow protein (PYP), a new type of photoreceptor that has been isolated from Ectothiorhodospira halophila, have been investigated. First, the thermal denaturation of PYP at pH 3.4 has been examined by global analysis of the temperature-induced changes in the UV-VIS absorbance spectrum of this chromophoric protein. Subsequently, a thermodynamic model for protein (un)folding processes, incorporating heat capacity changes, has been applied to these data. The second aspect of PYP that has been studied is the temperature dependence of its photocycle kinetics, which have been reported to display an unexplained deviation from normal Arrhenius behavior. We have extended these measurements in two solvents with different hydrophobicities and have analyzed the number of rate constants needed to describe these data. Here we show that the resulting temperature dependence of the rate constants can be quantitatively explained by the application of a thermodynamic model which assumes that heat capacity changes are associated with the two transitions in the photocycle of PYP. This result is the first example of an enzyme catalytic cycle being described by a thermodynamic model including heat capacity changes. It is proposed that a strong link exists between the processes occurring during the photocycle of PYP and protein (un)folding processes. This permits a thermodynamic analysis of the light-induced, physiologically relevant, conformational changes occurring in this photoreceptor protein.  相似文献   

13.
A rabbit antiserum was raised against the photoactive yellow protein (PYP) from Ectothiorhodospira halophila and purified by adsorption experiments to obtain a highly specific polyclonal antiserum. This antiserum was used to obtain the following results. (i) In E. halophila, PYP can be isolated from the fraction of soluble proteins. In the intact cell, however, PYP appeared to be associated with (intra)cytoplasmic membranes, as was concluded from analysis of immunogold-labelled thin sections of the organism. (ii) The regulation of expression of PYP was studied by using dot blot assays, Western blotting (immunoblotting), and rocket immunoelectrophoresis. Under all conditions investigated (light color, salt concentration, and growth phase), PYP was expressed constitutively in E. halophila. However, when Rhodospirillum salexigens was grown aerobically, the expression of PYP was suppressed. (iii) A large number of prokaryotic microorganisms contained a single protein, with an apparent size of approximately 15 kDa, that cross-reacted with the antiserum. Among the positively reacting organisms were both phototrophic and chemotrophic, as well as motile and nonmotile, organisms. After separation of cellular proteins into a membrane fraction and soluble proteins, it was established that organisms adapted to growth at higher salt concentrations tended to have the cross-reacting protein in the soluble fraction. In the cases of R. salexigens and Chromatium salexigens, we have shown that the cross-reacting protein involved is strongly homologous to PYP from E. halophila.  相似文献   

14.
PYP (photoactive yellow protein) is a photoreceptor protein, which is activated upon photo-isomerization of the p-coumaric acid chromophore and is inactivated as the chromophore is thermally back-isomerized within a second (in PYP(M)-to-PYP(dark) conversion). Here we have examined the mechanism of the rapid thermal isomerization by analyzing mutant PYPs of Met100, which was previously shown to play a major role in facilitating the reaction [Devanathan, S. et al. (1998) Biochemistry 37, 11563-11568]. The mutation to Lys, Leu, Ala, or Glu decelerated the dark state recovery by one to three orders of magnitude. By evaluating temperature-dependence of the kinetics, it was found that the retardation resulted unequivocally from elevations of activation enthalpy (DeltaH( double dagger )) but not the other parameters such as activation entropy or heat capacity changes. Another effect exerted by the mutations was an up-shift of the apparent pK(a) of the chromophore [the pK(a) of a titratable group (X) that controls the pK(a) of the chromophore] in the PYP(M)-decay process. The pK(a) up-shift and the DeltaH( double dagger ) elevation show an approximately linear correlation. We, therefore, postulate that the role of Met100 is to reduce the energy barrier of the PYP(M)-decay process by an indirect interaction through X and that the process is thereby facilitated.  相似文献   

15.
In the bacterial photoreceptor photoactive yellow protein (PYP), absorption of blue light by its chromophore leads to a conformational change in the protein associated with differential signaling activity, as it executes a reversible photocycle. Time-resolved Laue crystallography allows structural snapshots (as short as 150 ps) of high crystallographic resolution (approximately 1.6 A) to be taken of a protein as it functions. Here, we analyze by singular value decomposition a comprehensive time-resolved crystallographic data set of the E46Q mutant of PYP throughout the photocycle spanning 10 ns-100 ms. We identify and refine the structures of five distinct intermediates and provide a plausible chemical kinetic mechanism for their inter conversion. A clear structural progression is visible in these intermediates, in which a signal generated at the chromophore propagates through a distinct structural pathway of conserved residues and results in structural changes near the N terminus, over 20 A distant from the chromophore.  相似文献   

16.
We have studied the kinetics of the blue light-induced branching reaction in the photocycle of photoactive yellow protein (PYP) from Ectothiorhodospira halophila, by nanosecond time-resolved UV/Vis spectroscopy. As compared to the parallel dark recovery reaction of the presumed blue-shifted signaling state pB, the light-induced branching reaction showed a 1000-fold higher rate. In addition, a new intermediate was detected in this branching pathway, which, compared to pB, showed a larger extinction coefficient and a blue-shifted absorption maximum. This substantiates the conclusion that isomerization of the chromophore is the rate-controlling step in the thermal photocycle reactions of PYP and implies that absorption of a blue photon leads to cis-->trans isomerization of the 4-hydroxy-cinnamyl chromophore of PYP in its pB state.  相似文献   

17.
While the biochemical basis of photosynthesis by bacteriochlorophyll-based reaction centres in purple phototrophic Eubacteria and retinal-based bacteriorhodopsin in the Archaebacterium Halobacterium salinarium has been elucidated in great detail, much less is known about photosensory signal transduction; this is especially the case for Eubacteria. Recent findings on two different photosensory proteins in two different Eubacteria, which both show clear resemblances to the rhodopsins, will be presented. The photoactive yellow protein (PYP) from the purple phototrophic organism Ectothiorhodospira halophila probably functions as the photoreceptor for a new type of negative phototaxis response and has been studied in some detail with respect to its structural and photochemical characteristics. On basis of crystallographic an photochemical data it has been proposed that PYP contains retinal as a chromophore. However, we have unambiguously demonstrated that the PYP chromophore is different from retinal, in spite of the fact that PYP's photochemical properties show striking similarities with the rhodopsins. The cyanobacterium Calothrix sp. displays complementary chromatic adaptation, a process in which the pigment composition of the phycobilisomes is adjusted to the spectral characteristics of the incident light. In orange light the blueish chromophore phycocyanin is present, in green light the reddish phycoerythrin is synthesized. On the basis of the action spectrum of this adaptation process, we hypothesized that a rhodopsin is the photosensor in this process. In line with this, we found that nicotine, an inhibitor of the biosynthesis of beta-carotene (which is the precursor of retinal), abolishes chromatic adaptation. Direct proof of the involvement of a photosensory rhodopsin was obtained in experiments in which the chromatic adaptation response was restored by the addition of retinal to the cultures. The two photosensory proteins mentioned above represent the first examples of eubacterial photoreceptors that can be studied at a molecular level. Our current knowledge on these two proteins and their status as retinal proteins will be reviewed.  相似文献   

18.
The purple phototrophic bacterium, Thermochromatium tepidum, contains a gene for a chimeric photoactive yellow protein/bacteriophytochrome/diguanylate cyclase (Ppd). We produced the Tc. tepidum PYP domain (Tt PYP) in Escherichia coli, and found that it has a wavelength maximum at 358 nm due to a Leu46 substitution of the color-tuning Glu46 found in the prototypic Halorhodospira halophila PYP (Hh PYP). However, the 358 nm dark-adapted state is in a pH-dependent equilibrium with a yellow species absorbing at 465 nm (pK(a) = 10.2). Following illumination at 358 nm, photocycle kinetics are characterized at pH 7.0 by a small bleach and red shift to what appears to be a long-lived cis intermediate (comparable to the I(2) intermediate in Hh PYP). The recovery to the dark-adapted state has a lifetime of approximately 4 min, which is approximately 1500 times slower than that for Hh PYP. However, when the Tt PYP is illuminated at pH values above 7.5, the light-induced difference spectrum indicates a pH-dependent equilibrium between the I(2) intermediate and a red-shifted 440 nm intermediate. This equilibrium could be responsible for the sigmoidal pH dependence of the recovery of the dark-adapted state (pK(a) = 8.8). In addition, the light-induced difference spectrum shows that, at pH values above 9.3, there is an apparent bleach near 490 nm superimposed on the 358 and 440 nm changes, which we ascribe to the equilibrium between the protonated and ionized dark-adapted forms. The L46E mutant of Tt PYP has a wavelength maximum at 446 nm, resembling wild-type Hh PYP. The kinetics of recovery of L46E following illumination with white light are slow (lifetime of 15 min at pH 7), but are comparable to those of wild-type Tt PYP. We conclude that Tt PYP is unique among the PYPs studied to date in that it has a photocycle initiated from a dark-adapted state with a protonated chromophore at physiological pH. However, it is kinetically most similar to Rhodocista centenaria PYP (Ppr) despite the very different absorption spectra due to the lack of E46.  相似文献   

19.
During genome sequence analysis of Rhodobacter capsulatus, nearby open reading frames were found that encode a photoactive yellow protein (PYP) and a hypothetical biosynthetic enzyme for its chromophore, a tyrosine ammonia lyase (TAL). We isolated the TAL gene, overproduced the recombinant protein in Escherichia coli, and after purification analyzed the enzyme for its activity. The catalytic efficiency for tyrosine was shown to be approximately 150 times larger than for phenylalanine, suggesting that the enzyme could in fact be involved in biosynthesis of the PYP chromophore. To our knowledge it is the first time this type of enzyme has been found in bacteria.  相似文献   

20.
Photoactive yellow protein, a small, water-soluble blue-light absorbing photoreceptor protein from Ectothiorhodospira(Halorhodospira)[space]halophila has a structure with two hydrophobic cores, of which the main one houses its light-sensitive chromophore (p-coumaric acid), separated by a central [small beta]-sheet. This photoreceptor protein contains a single tryptophan residue (W119) that is situated at the interface between the central beta-sheet and its N-terminal cap. The fluorescence properties of W119 in the dark state pG (lambda(max)= 328 nm; Phi(fl)= 0.01; nearly pH-independent) are typical for a buried tryptophan in a hydrophobic environment with significant quenching by nearby amino acid residues. Signalling state formation leads to pH-dependent fluorescence changes: At pH values <6.5 the fluorescence emission increases, with a minor blue shift of the emission maximum. Above this pH, the emission maximum of the tryptophan shifts considerably to the red, whereas its total intensity decreases. These results further support the contention that signalling state formation in PYP leads to significant changes in the structure of this protein, even at sites that are at a considerable distance from the chromophore. The nature of these changes in pB, however, depend upon the pH imposed upon the protein: At slightly alkaline pH, which presumably is closest to the pH to which this protein is exposed in vivo, these changes lead to an exposure of the part of the central beta-sheet harbouring W119. At slightly acidic pH the polarity of the environment of W119 is hardly affected by the formation of the signalling state but the quenching of its fluorescence emission, possibly by nearby amino acids, is reduced. On the other hand, its accessibility for quenching by small molecules in the solution is enhanced at acidic and alkaline pH in the signalling state (pB) compared to the dark state (pG). This latter observation points towards a more flexible structure of the N-terminal cap, having a looser interaction with the central beta-sheet in pB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号