首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of temperature on embryogenesis and postinfection development in Meloidogyne konaensis were examined. Embryogenesis was evaluated at 5, 8, 10, 13, 16, 20, 22, 24, 26, 28, 30, 35, and 40 C. No embryonic development occurred at 5 C. Some development, although incomplete, occurred at 8 and 10 C. The rate of embryogenesis was linear from 13 to 30 C, but decreased at 35 C. The lowest egg mortality occurred at 24 C, whereas all eggs died within 24 hours at 40 C. Postinfection development was determined on coffee and tomato in a greenhouse at an average temperature of 30 C and in a growth chamber with a constant temperature of 26 C. Development of M. konaensis J2 to mature female required 38 and 48 days on coffee at 30 and 26 C, respectively. This process took 20 and 26 days, respectively, on tomato.  相似文献   

2.
The continual detection of a slow (I1) esterase band in greenhouse cultures of Meloidogyne konaensis isolated from the field led to a hypothesis that the nematode may be polymorphic for esterase. A survey of coffee fields demonstrated at least four esterase phenotypes were present in Meloidogyne recovered. An F1 phenotype predominated (60% of the females), but an I1 phenotype was also common (30% of samples). A series of greenhouse and laboratory experiments were undertaken to understand this polymorphism. Esterase phenotype was not affected by development at 22º, 25º, or 33 ºC on tomato. Two different esterase phenotypes (I1 and F1-I1) were detected after M. konaensis was grown on tomato for several generations, even in single-egg-mass lines derived from an F1 female. Three isolates of M. konaensis differing in esterase phenotype (F1, I1, and F1-I1) did not differ morphologically but did differ in their parasitic ability. Only the F1 isolate parasitized Coffea arabica. The F1-I1 isolate had greater reproduction on Lycopersicon esculentum and Cucumis sativus than either the I1 or F1 isolate. The mechanism of the development of the polymorphism has yet to be determined. However, the F1 esterase may be useful as a marker for future research on parasitism of coffee by M. konaensis.  相似文献   

3.
Two experiments were conducted to assess nutrient partitioning in coffee (Coffea arabica cv. Typica land race Guatemala) infected with Meloidogyne konaensis. Nutrient levels were quantified from soil, roots, and leaves. In the first experiment, 500-cm3 aliquants of a Kealakekua Andisol were infested with four initial population densities of M. konaensis ranging from 0 to 1,500 freshly hatched second-stage juveniles. Coffee plants (~3 months old) were transplanted into the soil and grown for 25 weeks. Plants responded to nematode infection with decreases (P < 0.05) in concentrations of Ca, Mg, P, and B and increases (P < 0.05) in concentrations of Mn, Cu, Zn, and Ca/B in the roots. Mn and Cu uptake by roots was decreased (P < 0.05) by nematode infection even though concentrations of Mn and Cu increased (P < 0.05) in the roots. Concentrations of Ca and Mg also decreased (P < 0.05) in the leaves, whereas the concentration of Zn increased (P < 0.05). In the second experiment, the soil was amended with Zn at 0 or 5 mg/kg soil and infested with M. konaensis at 0, 100, 1,000 or 10,000 eggs/1,200 cm3 soil. Three-month-old coffee seedlings of similar height were weighed and transplanted into pots and then placed in a greenhouse and grown under 50% shade for 23 weeks. Concentrations of P, K, Ca, Mg, Mn, B, and Zn increased in roots of nematode-free plants growing in Zn-amended soil. The beneficial effects due to the Zn amendment were not apparent in nematode-infected plants. Mn, B, and Zn uptake by coffee roots and P and B concentrations in coffee leaves responded similarly. Management of M. konaensis is necessary to achieve optimal nutrient management in coffee.  相似文献   

4.
Minas Gerais is the major coffee-producing state of Brazil, with 28% of its production coming from the region of Zona da Mata. Four major species of root-knot nematode attacking coffee (Meloidogyne incognita, M. paranaensis, M. coffeicola, and M. exigua) have been reported from Brazil. To determine the variability in Meloidogyne spp. occurring in that region, 57 populations from 20 localities were evaluated for morphological, enzymatic, and physiological characteristics. According to the perineal pattern, all the populations were identified as M. exigua; however populations from the municipality of São João do Manhuaçu exhibited patterns very similar to M. arenaria. The identity of all the populations was confirmed by the phenotypes of esterase, malate dehydrogenase, superoxide dismutase, and glutamate-oxaloacetate transaminase. Thirteen populations (22.8%) showed the typical one-band (E1) esterase phenotype, whereas the others (77.2%) had a novel two-band phenotype (E2). No intraspecies variability was found in any population. All populations were able to reproduce on tomato, pepper, beans, cacao, and soybean. Reproduction was greater on tomato and pepper than on coffee seedlings, the susceptible standard.  相似文献   

5.
An unusual population of Meloidogyne hapla, earlier thought to be an undescribed species, was found causing large galls, without adventitious roots, and substantial damage to coffee in Maui, Hawaii. Only in Brazil had similar damage to coffee been reported by this species. Unlike M. exigua from South and Central America, this population reproduced well on coffee cv. Mokka and M. incognita-susceptible tomato but poorly on tomato with the Mi resistance gene. Characterization included SEM images, esterase isozymes, and five DNA sequences: i) the D3 segment of the large subunit (LSU-D3 or 28S) rDNA, ii) internal transcribed spacer (ITS-1) rDNA, iii) intergenic spacer (IGS) rDNA, iv) the mitochondrial interval from cytochrome oxidase (CO II) to 16S mtDNA, and v) the nuclear gene Hsp90. Sequences for ITS-1, IGS, and COII were similar to other M. hapla populations, but within species ITS-1 variability was not less than among species. One LSU-D3 haplotype was similar to a previously analyzed population with two minor haplotypes. Hsp90 exhibited some variation between Maryland and Hawaiian populations distinct from other species. Females were narrow with wide vulval slits, large interphasmidial distances, and more posterior excretory pores; 20% of perineal patterns had atypical perivulval lines. Males had a low b ratio (<12 µm). Juveniles had a short distance between stylet and dorsal gland orifice. Juvenile body length was short (<355 µm) and was different between summer and winter populations.  相似文献   

6.
A root-knot nematode parasitizing coffee in Paran  State, Brazil, is described as Meloidogyne paranaensis n. sp. The suggested common name is Paraná coffee root-knot nematode. The perineal pattern is similar to that of M. incognita; the labial disc and medial lips of the female are fused and asymmetric and rectangular; the lateral lips are small, triangular, and fused laterally with the head region. The female stylet is 15.0-17.5 μm long, with broad, distinctly set-off knobs; the distance from the dorsal esophageal gland orifice (DGO) to the stylet base is 4.2-5.5 μm. Males have a high, round head cap continuous with the body contour. The labial disc is fused with the medial lips to form an elongate lip structure. The head region is frequently marked by an incomplete annulation. The stylet is robust, 20-27 μm long, usually with round to transversely elongate knobs, sometimes with one or two projections protruding from the shaft. The stylet length of second-stage juveniles is 13-14 μm, the distance of the DGO to the stylet base is 4.0-4.5 μm, and the tail length is 48-51 μm. Biochemically, the esterase (F₁) and malate dehydrogenase (N₁) phenotypes are the most useful characters to differentiate M. paranaensis from other species. However, the esterase phenotype appears similar to that of M. konaensis. Reproduction is by mitotic parthenogenesis, 3n = 50-52. In differential host tests, tobacco, watermelon, and tomato were good hosts, whereas cotton, pepper, and peanut were nonhosts.  相似文献   

7.
The reproductive potential of Meloidogyne graminicola was compared with that of M. incognita on Trifolium species in greenhouse studies. Twenty-five Trifolium plant introductions, cultivars, or populations representing 23 species were evaluated for nematode reproduction and root galling 45 days after inoculation with 3,000 eggs of M. graminicola or M. incognita. Root galling and egg production by the two root-knot nematode species was similar on most of the Trifolium species. In a separate study, the effect of initial population densities (Pi) of M. graminicola and M. incognita on the growth of white clover (T. repens) was determined. Reproductive and pathogenic capabilities of M. graminicola and M. incognita on Trifolium spp. were similar. Pi levels of both root-knot nematode species as low as 125 eggs per 10-cm-d pots severely galled white clover plants after 90 days. Meloidogyne graminicola has the potential to be a major pest of Trifolium species in the southeastern United States.  相似文献   

8.
Responses of egg masses, free eggs, and second-stage juveniles (J2) ofMeloidogyne hapla and M. chitwoodi to ethoprop were evaluated. The results indicated that J2 were the most sensitive, followed by free eggs and egg masses. In general, M. chitwoodi was more susceptible to ethoprop than M. hapla. Ethoprop at 7.2 μg a.i./g soil protected tomato roots from upward migrating M. chitwoodi for 5 weeks. The zone of protection was extended to 10 and 20 cm below the root zone when 3.6 and 7.2 cm water were applied over 8 days. Ethoprop at 1.8, 3.6, and 7.2 μg a.i./g soil degraded faster and killed fewer M. chitwoodi J2 in potato field soil previously exposed to ethoprop than in unexposed soil or sterilized exposed soil. The enhanced biodegradation property of the exposed soil lasted 17 months after the last application of ethoprop. The limited downward movement of ethoprop in the soil, migration of M. chitwoodi J2 into the treated zone, presence of resistant life stage(s) at the time of application, and loss of efficacy due to enhanced biodegradation may have a significant effect on the performance of ethoprop.  相似文献   

9.
A mixed population of Meloidogyne arenaria race 1 and M. javanica race 3 is reported on peanut from a field in Levy County, Florida. Confirmation of M. javanica on peanut is based on esterase and malate dehydrogenase isozyme patterns resolved on polyacrylamide slab gels following electrophoresis, and perineal patterns. Up to 29% of 290 individual females collected from peanut roots in the field in autumn 2002 showed a typical esterase J3 phenotype for M. javanica. This is the third report of M. javanica infecting peanut in the United States.  相似文献   

10.
Resistance to a peanut-parasitic population of Meloidogyne javanica and an undescribed Meloidogyne sp. in peanut breeding lines selected for resistance to Meloidogyne javanica was examined in greenhouse tests. The interspecific hybrid TxAG-7 was resistant to reproduction of Meloidogyne javanica, M. javanica, and Meloidogyne sp. An Meloidogyne javanica-resistant selection from the second backcross (BC) of TxAG-7 to the susceptible cultivar Florunner also was resistant to M. javanica but appeared to be segregating for resistance to the Meloidogyne sp. When reproduction of M. javanica and Meloidogyne javanica were compared on five BC4F3 peanut breeding lines, each derived from Meloidogyne javanica-susceptible BC4F2 individuals, all five lines segregated for resistance to M. javanica, whereas four of the lines appeared to be susceptible to Meloidogyne javanica. These data indicate that several peanut lines selected for resistance to Meloidogyne javanica also contain genes for resistance to populations of M. javanica and the undescribed Meloidogyne sp. that are parasitic on peanut. Further, differences in segregation patterns suggest that resistance to each Meloidogyne sp. is conditioned by different genes.  相似文献   

11.
Aldicarb, ethoprop, and fenamiphos were evaluated for their efficacy in controlling various species of root-knot nematodes on flue-cured tobacco and for their residual activity, as determined through periodic sampling and bioassays of soil taken from field plots. Field experiments were conducted at five locations over 2 years with flue-cured tobacco. Soil in plots treated with nematicides were formed into high, wide beds before transplanting with ''Coker 371-Gold'' or ''K 326'' tobacco. Residual control of Meloidogyne spp. was greatest (P ≤ 0.05) with fenamiphos (in some cases up to 10 weeks, as measured in tomato bioassays of infested soil and root fragments). Suppression of nematode reproduction by ethoprop was short-lived, and numbers of second-stage juveniles + eggs and numbers of galls in bioassays sometimes surpassed those of untreated plots within 4 weeks after treatment. Aldicarb gave intermediate control over time as compared to the other compounds. Although nematicidal efficacy of all compounds varied with site and season, fenamiphos and aldicarb generally produced the highest yields.  相似文献   

12.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.  相似文献   

13.
Meloidogyne trifoliophila n. sp. is described from white clover collected at Ames Plantation, Fayette County, Tennessee. The perineal pattern is rounded, with long, smooth striae and rounded arch, and without distinct lateral lines or perivulval striae. The female stylet is 12.6-15.5 μm long, the excretory pore is level with or up to one stylet length posterior to the stylet knobs, and the vulva is subterminal. The posterior terminus is weakly protuberant. The male lateral field is composed of approximately eight repeatedly broken or forked incisures. The male stylet is 17.0-18.9 μm long, the stylet knobs are rounded and sloping, gradually merging with the shaft, and the head region consists of one large annule. Second-stage juveniles are 357-400 μm long, with a stylet length of 11.9-13.6 μm and one head annule. The tail tapers to a slender tip. This new species is similar to M. graminicola and M. triticoryzae but differs from them in perineal pattern and lateral field morphology, and numerous morphometric characters.  相似文献   

14.
The overwintering of Meloidogyne incognita in and around Vitis vinifera cv. French Colombard roots was studied in a naturally infested vineyard at the Kearney Agricultural Center, in a growth chamber, in inoculated vines in microplots at the University of California, Davis, and in a greenhouse. Infected roots were sampled at intervals from onset of vine dormancy until plants accumulated about 800 degree days (DD - base 10 C). Embryogenesis within eggs, classified as less than or more than 16 cells and fully differentiated, and numbers of juveniles (second to fourth stage) and preovipositional and mature (egg-laying) adult stages in roots were determined. All stages were present at the onset of dormancy. Juveniles and immature females were not recovered during the dormant period. Mature females and eggs were always present in roots, although the number of mature females generally decreased with time after onset of dormancy. In contrast, in a greenhouse experiment that accumulated comparable DD without the host plant going through dormancy, the number of mature females increased. After bud break, the number of eggs per female increased and all nematode stages were found in host roots. Eggs in all stages of embryogenesis were observed at all times of sampling, indicating that females overwinter and are capable of laying eggs when conditions improve in the spring and need to be considered in nematode management decisions.  相似文献   

15.
The effect of the Mi gene on the reproductive factor of Meloidogyne chitwoodi and M. hapla, major nematode pests of potato, was measured on nearly isogenic tomato lines differing in presence or absence of the Mi gene. The Mi allele controlled resistance to reproduction of race 1 of M. chitwoodi and to one of two isolates of race 2. No resistance to race 3 of M. chitwoodi or to M. hapla was found. Variability in response to isolates of race 2 may reflect diversity of virulence genotypes heretofore undetected. Resistance to race 1 of M. chitwoodi could be useful in potato if the Mi gene were functional following transferral by gene insertion technology into potato. Since the Mi gene is not superior to RMc₁ derived from Solarium bulbocastanum, the transferral by protoplast fusion appears to offer no advantage.  相似文献   

16.
The interaction between Meloidogyne incognita and Criconemella xenoplax on nematode reproduction and growth of Lovell peach was studied in field microlots and the greenhouse. Meloidogyne incognita suppressed reproduction of C. xenoplax in both field and greenhouse experiments. Tree growth, as measured by trunk diameter, was reduced (P ≤ 0.05) in the presence of M. incognita as compared with C. xenoplax of the uninoculated control trees 26 months following inoculation. A similar response regarding dry root weight was also detected in greenhouse-grown seedlings after 5 months. The presence of C. xenoplax did not affect Lovell tree growth. A synergistic effect causing a reduction (P ≤ 0.05) in tree growth was recorded 26 and 38 months following inoculation. The presence of M. incognita increased levels of malonyl-1-aminocyclopropane-1-carboxylic acid content in leaves of trees grown in field microplots 19 months after inoculaoon. Meloidogyne incognita appears to be a more dominant parasite than C. xenoplax on Lovell peach.  相似文献   

17.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes.  相似文献   

18.
Guardian peach rootstock was evaluated for susceptibility to Meloidogyne incognita race 3 (Georgia-peach isolate) and M. javanica in the greenhouse. Both commercial Guardian seed sources produced plants that were poor hosts of M. incognita and M. javanica. Reproduction as measured by number of egg masses and eggs per plant, eggs per egg mass, and eggs per gram of root were a better measure of host resistance than number of root galls per plant. Penetration, development, and reproduction of M. incognita in Guardian (resistant) and Lovell (susceptible) peach were also studied in the greenhouse. Differences in susceptibility were not attributed to differential penetration by the infectivestage juveniles (J2) or the number of root galls per plant. Results indicated that M. incognita J2 penetrated Guardian roots and formed galls, but that the majority of the nematodes failed to mature and reproduce.  相似文献   

19.
A microplot study on the influence of cropping sequences with peanut in summer and bare fallowed or cover crops of rye or vetch in winter on the population development of Pasteuria penetrans was initiated in the spring of 1987. The number of spores of P. penetrans attached per second-stage juvenile of Meloidogyne arenaria race 1 increased from 0.11 in the fall of 1987 to 7.6, 8.6, and 3.6 in the fall of 1989 in the rye, vetch, and fallowed plots, respectively. Higher (P ≤ 0.05) levels of P. penetrans occurred in the rye and vetch plots than in fallowed plots. No influence of P. penetrans on peanut, rye, or vetch yield was observed in 1987 and 1988, but in 1989 peanut yield was 64% higher (P ≤ 0.05) in plots infested with P. penetrans than in plots without P. penetrans. Numbers of M. arenaria in plots without P. penetrans were influenced by the cropping sequences in the spring of 1988 and 1989 but not in the fall following the peanut crop. In the spring the plots with rye had the lowest nematode numbers in either year (P ≤ 0.05). Nematode numbers were lower (P ≤ 0.05) in plots with P. penetrans than in plots without P. penetrans in the spring of 1989 (vetch) and the fall of 1989 (rye, vetch, and fallowed).  相似文献   

20.
Phaseolus vulgaris lines with heat-stable resistance to Meloidogyne spp. may be needed to manage root-knot nematodes in tropical regions. Resistance expression before and during the process of nematode penetration and development in resistant genotypes were studied at pre- and postinoculation temperatures of 24 °C and 24 °C, 24 °C and 28 °C, 28 °C and 24 °C, and 28 °C and 28 °C. Resistance was effective at all temperature regimes examined, with fewer nematodes in roots of a resistant line compared with a susceptible line. Preinoculation temperature did not modify resistance expression to later infections by root-knot nematodes. However, postinoculation temperatures affected development of Meloidogyne spp. in both the resistant and susceptible bean lines tested. The more rapid development of nematodes to adults at the higher postinoculation temperature of 28 °C in both bean lines suggests direct temperature effects on nematode development instead of on resistance expression of either of two gene systems. Also, resistance was stable at 30 °C and 32 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号