首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to determine the effects of seven kinds of priming, gibberellic acid (GA), salicylic acid (SA), citric acid (CA), sodium chloride (NaCl), potassium chloride (KCl), zinc (Zn) and iron (Fe) on seed germination and seedling emergence of garden cress (Lepidium sativum) under arsenic stress. Results revealed that germination percentage (GP), seed vigor index (SVI), radicle length (RL), plumule length (PL) and tolerance index (TI) were significantly decreased when arsenic stress was augmented from 0 to 100 mg L?1. Nevertheless, primed seeds (hormo, nutri and halo-priming) increased seed germination and seedling emergence and tolerance index of L. sativum. Phytotoxicity was also reduced by priming practices. Meanwhile, priming with gibberellic acid (GA) had the most positive effects on measured traits. Generally, the order of the effect of priming treatments tested decreases by the following order: GA > CA > KCl > Fe > Zn > SA > NaCl. The result of this study is coherent with the hypothesis that under heavy metal stress, priming can develop seed germination performance and seedling emergence.  相似文献   

2.
Gui  Mengyao  Chen  Qian  Ma  Tao  Zheng  Maosheng  Ni  Jinren 《Applied microbiology and biotechnology》2017,101(4):1717-1727

Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L−1 h−1), higher nitrite accumulation (47.3∼99.8 mg L−1), and higher N2O emission ratios (5∼283 mg L−1/mg L−1). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L−1) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L−1) > Cu(II) (0.5∼5 mg L−1) > Ni(II) (2∼10 mg L−1) > Zn(II) (25∼50 mg L−1). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  相似文献   

3.
The selection of appropriate seeds is essential for the success of phytoremediation/restoration projects. In this research, the growth and elements uptake by the offspring of mesquite plants (Prosopis sp.) grown in a copper mine tailing (site seeds, SS) and plants derived from vendor seeds (VS) was investigated. Plants were grown in a modified Hoagland solution containing a mixture of Cu, Mo, Zn, As(III) and Cr(VI) at 0, 1, 5 and 10 mg L−1 each. After one week, plants were harvested and the concentration of elements was determined by using ICP-OES. At 1 mg L−1, plants originated from SS grew faster and longer than control plants (0 mg L−1); whereas plants grown from VS had opposite response. At 5 mg L−1, 50% of the plants grown from VS did not survive, while plants grown from SS had no toxicity effects on growth. Finally, plants grown from VS did not survive at 10 mg L−1 treatment, whilst 50% of the plants grown from SS survived. The ICP-OES data demonstrated that at 1 mg L−1 the concentration of all elements in SS plants was significantly higher compared to control plants and VS plants. While at 5 mg L−1, the shoots of SS plants had significantly more Cu, Mo, As, and Cr. The results suggest that SS could be a better source of plants intended to be used for phytoremediation of soil impacted with Cu, Mo, Zn, As and Cr.  相似文献   

4.
《农业工程》2014,34(6):337-341
In order to examine the response characteristics and possible reasons of Atriplex lentiformis and Atriplex undulata under salt stress at stage of seed germination, the seeds were treated with different concentrations of NaCl (0, 50, 100, 200 and 300 mmol⋅L−1), 20 mmol⋅L−1 LiCl or mannitol whose iso-osmotic concentrations corresponding to 200 mmol⋅L−1 NaCl. The results showed that the germination rate of two species of saltbush was depressed with the increase of NaCl concentration, and A. lentiformis showed greater salt tolerance compared with A. undulata. After removal of salt stress, the final germination ratio of A. lentiformis was over 93%, while that of A. undulata was only 56%. Evans blue staining revealed that 200 mmol⋅L−1 NaCl did not damage membrane permeability of A. lentiformis seed embryos, but significantly increased the membrane permeability of A. undulata seed embryos and caused irreversible damage to them, especially radicles. The results on water uptake indicated that the inhibition of NaCl on seed germination was mainly due to osmotic stress instead of ionic toxicity, and A. lentiformis exhibited higher salt tolerance due to its greater resistance to osmotic stress.  相似文献   

5.
White shrimp Litopenaeus vannamei which had been immersed in seawater containing the hot-water extract of Gracilaria tenuistipitata at 0 (control), 200, 400, and 600 mg L?1 for 3 h, were challenged with Vibrio alginolyticus at 4.6 × 106 colony-forming units (CFU) shrimp?1 and then placed in normal seawater (34‰). The survival rates of shrimp immersed in 200, 400, and 600 mg L?1 of the hot-water extract were significantly higher than those of control shrimp over 48–120 h. In another experiment, L. vannamei which had been immersed in the hot-water extract at 0, 200, 400, and 600 mg L?1 for 3 h, were challenged with V. alginolyticus at 4.0 × 106 CFU shrimp?1, and the immune parameters examined included the haemocyte count, phenoloxidase (PO) activity, respiratory burst (RB), and superoxide dismutase (SOD) activity at 12–120 h post-challenge after shrimp had been released into normal seawater. Shrimp not exposed to the hot-water extract or V. alginolyticus served as the background control. Results indicated that the haemocyte count, PO activity, RB, and SOD activity of shrimp immersed in 600 mg L?1 were significantly higher than those of control shrimp at 12–72 h post-challenge. Results also indicated that total haemocyte count (THC), PO activity, RB and SOD activity of shrimp immersed in 400 and 600 mg L?1 of the hot-water extract returned to the background values at 96, 48, 48, and 72 h, whereas these parameters of control shrimp returned to the original values at >120, >120, 96, and 96 h post-challenge, respectively. It was therefore concluded that L. vannamei that had been immersed in seawater containing the hot-water extract of G. tenuistipitata exhibited protection against V. alginolyticus as evidenced by the earlier recovery of immune parameters.  相似文献   

6.
The effects of increasing arsenic (0, 10, 50, 100 mg L?1) and zinc (0, 50, 80, 120, 200 mg L?1) doses on germination and oxidative stress markers (H2O2, MDA, SOD, CAT, APX, and GR) were examined in two Brazilian savanna tree species (Anadenanthera peregrina and Myracrodruon urundeuva) commonly used to remediate contaminated soils. The deleterious effects of As and Zn on seed germination were due to As- and Zn-induced H2O2 accumulation and inhibition of APX and GR activities, which lead to oxidative damage by lipid peroxidation. SOD and CAT did not show any As- and Zn-induced inhibition of their activities as was seen with APX and GR. We investigated the close relationships between seed germination success under As and Zn stress in terms of GR and, especially, APX activities. Increased germination of A. peregrina seeds exposed to 50 mg L?1 of Zn was related to increased APX activity, and germination in the presence of As (10 mg L?1) was observed only in M. urundeuva seeds that demonstrated increased APX activity. All the treatments for both species in which germination decreased or was inhibited showed decreases in APX activity. A. peregrina seeds showed higher Zn-tolerance than M. urundeuva, while the reverse was observed with arsenic up to exposures of 10 mg L?1.  相似文献   

7.

The seed viability, ex vitro germination, and percentage of in vitro zygotic embryo germination were found to be very low in Ensete superbum (Roxb.) Cheesman. Only 33.33% of seeds were viable, and the ex vitro germination percentage was only 5%, while the percentage of in vitro zygotic embryo germination was 33%. Somatic embryogenesis experiments produced competent callus on Murashige and Skoog (MS) medium supplemented with 2.5 mg L−1 2,4-D and 3 mg L−1 BAP from inflorescence explants. The embryogenic callus produced the maximum number of somatic embryos on MS basal medium kept in a dark chamber for 15 wk. Half-strength MS medium supplemented with 500 mg L−1 glutamine was optimal for somatic embryo germination and development of plantlets. Regenerated plants had 80 to 90% survival rate. Therefore, somatic embryogenesis can be considered as an efficient method to overcome a drastic reduction in population and to achieve germplasm conservation.

  相似文献   

8.

Seed germination is the critical initial phase in the life cycle of plant and it is affected by various exogenous factors, including heavy metals. Seed germination and subsequent seedling growth of alfalfa (Medicago sativa L.) incubated in glass Petri dish in presence of elevated concentrations of pentavalent vanadium V(V) solution (0, 0.1, 0.5, 2, 4, 10, 50 mg L−1 V, supplied as NaVO3·2H2O) were evaluated. Results showed that vanadium did not (P > 0.05) affect seed germination, final survival rate, and seedling height of alfalfa when exogenously treated dosages were ≤ 10 mg L−1 V, whereas the root vitality and root elongation were distinctly inhibited at ≥ 0.5 mg L−1 V treatments. A progressively deepened testa color at increasing vanadium concentrations during germination and an apparent modified structure of the seed coat at 50 mg L−1 V compared to control in alfalfa were noted. Alfalfa seeds showed rapid and almost synchronous radicle emergence, independently of the vanadium concentration in the medium. The accumulation of vanadium in testa is beneficial to alleviate its toxicity to the seed germination of alfalfa. Leaf proline content was dramatically increased at ≥ 0.5 mg L−1 V treatments compared with the control. Emerged seedlings displayed enough vigor and health to potentially colonize in the vanadium-contained matrix. Thus, alfalfa represents a good candidate for phytoremediation approach aimed at decontaminating environments when vanadium concentrations are within the determined thresholds.

  相似文献   

9.
Imidacloprid and thiamethoxam are neonicotinoids that have been tested in several Orius species, including Orius laevigatus (Fieber) (Hemiptera: Anthocoridae), but not the variability in their effect among Orius populations of a single species. In this study, the variation in susceptibility to imidacloprid and thiamethoxam in 30 Mediterranean wild populations and four commercial populations of O. laevigatus was investigated in the laboratory using a standard dip bioassay method. Lethal concentration values (LC50) and the mortality of adults at the maximum field rate (MFR) were calculated. The range of LC50 of thiamethoxam was from 0.7 to 5.9 mg l?1, an 8.4‐fold variability, obtaining mortality at MFR (100 mg l?1) of >89.1% in all populations. The baseline obtained a value of 2.1 mg l?1, which is very low compared to the MFR. For imidacloprid, the LC50 varied from 7.7 to 94.7 mg l?1 (12.3‐fold variability). Mortalities at the MFR (150 mg l?1) were 57.7–99.2%, that is, more variable than for thiamethoxam. The LC50 value of the baseline was 48.7 mg l?1, also low compared to the MFR. This variation was exploited to select two populations resistant to thiamethoxam and imidacloprid, respectively. Artificial selection for on average 40 cycles significantly increased the resistance to thiamethoxam (LC50 = 149.1 mg l?1) and imidacloprid (LC50 = 309.9 mg l?1). Mortalities at the MFR in the thiamethoxam‐ and imidacloprid‐resistant populations were 44.5 and 36.9%, respectively. These results demonstrate that resistance can be enhanced in biocontrol agents by artificial selection under laboratory conditions, starting with populations showing no or very low tolerance. Our neonicotinoid‐resistant populations might enhance the wider adoption of biological control by allowing punctual or hotspot applications of neonicotinoids to control several main and secondary pests.  相似文献   

10.
Various cadmium (Cd) concentrations (0, 50, 100, 200 and 300 ??mol L?1) affected Elymus dahuricus seed germination, seedling growth, antioxidative enzymes activities (AEA), and amounts of malondialdehyde (MDA) and proline present. These influences were determined for separate E. dahuricus cohorts known to be either infected (E+) or non-infected (E?) by a Neotyphodium endophyte. Under high Cd concentrations (100, 200 and 300 ??mol L?1), E+ specimens showed a significantly (P<0.05) higher germination rate and index, as well as higher values for shoot length, root length and dry biomass. However, the germination rate and index, root length and dry weight did not show a significant (P<0.05) difference under the low Cd concentrations (0 and 50 ??mol L?1). AEA and proline content increased, as did MDA content, in the E+ (vs. E?) specimens under high Cd concentrations. There was no significant (P>0.05) difference under low Cd concentrations. Endophyte infection was concluded to be of benefit to E. dahuricus exposed to high Cd concentrations.  相似文献   

11.
Environmental copper contamination is a serious human health problem. Copper reductase is produced by microorganisms to facilitate copper uptake by ATPases into the cells increasing copper biosorption. This study assessed the reduction of Cu(II) by cell-free extracts of a highly copper-resistant bacterium, Pseudomonas sp. strain NA, isolated from vineyard soil contaminated with copper. Both intact cells and cell-free extract of Pseudomonas sp. strain NA displayed substantial reduction of Cu(II). Intact cells reduced more then 80 mg L−1 of Cu(II) from medium amended with 200 mg L−1 of copper after 24 h of incubation. Cell-free extract of the isolate reduced more than 65% of the Cu(II) at initial copper concentration of 200 mg L−1 after 24 h. Soluble protein production was high at 72 h of incubation at 100 mg L−1 of copper, with more then 60 μg L−1 of total soluble protein in cell-free extract recorded. Cu(II) reduction by isolate NA was increased when copper concentration increased for both intact cells and cell-free extract. Results indicate that Pseudomonas sp. strain NA produces copper reductase enzyme as the key mechanism of copper biotransformation.  相似文献   

12.
As most gramineous plants, guinea grass (Panicum maximum) comprise cellulosic biomass, which may be used as a feedstock for bioenergy. In order to develop such potential energy plants on copper-polluted lands, the hydroponic experiments with Cu, Paclobutrazol (PP333, a kind of antigibberellin) and plant growth-promoting bacterial endophyte (PGPB) treatments were carried out in a greenhouse. The seedlings of two cultivars of guinea grass, GG1 (P. maximum var. Natsukomaki) and GG2 (P. maximum var. Natsukaze) in 3 weeks old were treated, respectively, with different Cu treatments [0(CK), 100, 200, 300, 400, 500 μM l−1 Cu] for estimating Cu toxicity. The results showed that elevated Cu restrained plant growth and reduced biomass. According to the EC50 value [the Cu concentration when the relative gain in fresh weight ratio was 50% of control] of two tested cultivars, the concentration of Cu for further experiments was decided as 300 μM l−1. Both pretreatments of PP333 (200, 400, 600 mg l−1) and PGPB (Pantoea sp.) significantly alleviated the negative affect caused by stress of 300 μM l−1 Cu. The pretreatment of 400 mg l−1 PP333 promoted both two cultivars in biomass, compared to 300 μM l−1 Cu treat. The inoculation of Pantoea sp. Jp3-3 increased shoot dry weight, compared to Cu treat. The results suggested that the main reason for both PP333 and Pantoea sp. Jp3-3 enhanced Cu tolerance in guinea grass was that their pretreatments significantly decreased Cu absorption and accumulation under excessive Cu stress. The present study has provided a new insight into the exploitation of energy plant in heavy metal polluted condition by the way of plant growth regulation for increasing heavy metal tolerance.  相似文献   

13.

Aims and methods

Concentrations of heavy metals such as Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in different tissues (seeds, roots and shoots) of the mature canola (Brassica napus L.) plants and in the associated rhizosphere soils from Yangtze River Delta (YRD) region of China, were determined to evaluate the heavy metals’ pollution in the soils and the canola seeds, and to discuss their accumulation and translocation characteristics in canola plants. At the same time, the phytoextraction potential of the canola plant for the above heavy metals was theoretically calculated and discussed on the basis of above measured data.

Results

The results showed that the concentration ranges of Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in the rhizosphere soils were 0.115–0.481, 3.40–20.5, 0.069–0.682, 9.92–27.4, 46.8–86.6, 17.7–253.3, 65.2–511.7 and 16.0–37.8?mg?kg?1, respectively. The concentrations of Cu, Zn and Hg at some sampling sites exceeded the 2nd grade threshods of Chinese national environmental quality standard for soils. The potential ecological risk of heavy metals in the canola rhizosphere soils decreased in the order of Zhejiang > Shanghai > Jiangsu provinces. The concentration ranges of above heavy metals in the canola seeds were 0.032–0.067, 0.002–0.005, 0.001–0.005, 0.053–0.165, 0.191–0.855, 3.01–13.20, 34.82–96.95 and 0.343–2.86?mg?kg?1, respectively, with Cu and Zn at some sampling sites exceeding the permissible concentrations in foods of China. Heavy metals’ concentrations in canola seeds didn’t increase with their increasing concentrations in the rhizosphere soils. The bioconcentration factors (BCFs) of most heavy metals in the canola seeds decreased with their increasing concentrations in the associated rhizosphere soils. The average BCFs of heavy metals decreased in the order of Zn (0.488)>Cd (0.241)>Cu (0.145)>Ni (0.038)>Hg (0.021)>Pb (0.005)=Cr (0.005)>As (0.000) in the canola seeds, Cd (1.550)>Cu (0.595)>Zn (0.422)>Hg (0.138)>Ni (0.085)>Pb (0.080)>As (0.035)>Cr (0.031) in the roots, and Cd (0.846)>Zn (0.242)>Cu (0.205)>Hg (0.159)>Ni (0.031)>Pb (0.025)>As (0.012)>Cr (0.007) in the shoots, respectively. The accumulation capacity for most of the above heavy metals in the mature canola tissues was root > shoot > seed, with the exceptions of seed > root > shoot for Zn and shoot > root > seed for Hg. Except Hg from root to shoot and Zn from root to seed, translocation factors (TFs) of above heavy metals were lower than 1.0.

Conclusions

The concentrations, BCFs and TFs of above heavy metals in the canola tissues indicated that the investigated canola plants did not meet the criteria of hyperaccumulators for the above heavy metals. The phytoextracton potential of the studied canola plants for the above heavy metals from the polluted soils was very limited. It would take 920, 3,170 and 3,762?years (assuming two crops per year) to reduce the initial soil Zn, Cu and Hg concentrations, respectively, from the most polluted soil concentrations to the 2nd grade thresholds of Chinese national environmental quality standard for soils.  相似文献   

14.
Effects of different concentrations of arsenite, arsenate, and chromate on seed germination, root length (RL), and shoot length (SL) in four seed types, chosen from preliminary tests with eight seed types, were investigated to assess the toxicity of the tested metals. The sensitivities of the four different seed types toward germination, relative RL (RRL), and relative SL (RSL) varied with each metal. In a comparison, the germination of the seeds was more sensitive to the tested metals than the other chosen endpoints (RL and SL). Arsenite was generally more restrictive to all the endpoints (germination, root, and shoot growth) than arsenate and chromate. Lactuca (garden lettuce) was also generally more sensitive to the tested metals than the other seed types. The correlation between RRL and RSL varied depending on the seed type and metal tested. However, significant correlations (r2 > 0.85) of these were observed with Lactuca seeds, which appeared to be an optimal plant with respect to the tolerance of the tested metals. The differences in the toxicities of metals toward different plant species should be taken into account in the bioassessment of metals-contaminated sites. Thus, this study encourages the need to combine the three endpoints of various seeds in the evaluation of toxicities of metals.  相似文献   

15.
This study describes for the first time in Pinus genus a plant regeneration system via a combined pathway of somatic embryogenesis and organogenesis from immature seeds of radiata pine. Somatic embryos were obtained from embryogenic line 2162 of Pinus radiata D. Don on EDM basal medium containing 60 μM ABA and 6% sucrose. The explants used for organogenesis experiments were either freshly collected somatic embryos or somatic embryos germinated for 1 week. Germination medium was half-strength LP medium, supplemented with 0.2% activated charcoal. Different induction periods and BA concentrations were assayed for shoot induction. After induction treatments, explants were elongated on the same medium used for germination stage. Rooting medium was quarter-strength LP medium supplemented with three different auxin treatments: 1.5 mg L−1 1-naphthalene acetic acid (NAA), 1.5 mg L−1 indole-3-butyric acid (IBA) and 1 mg L−1 IBA with 0.5 mg L−1 NAA (MIX). The effect of the photon flux (120 mmol m−2 s−1 and darkness) in the first week of the explants in the rooting media was also tested. This methodology could offer an alternative to overcome some problems associated with somatic embryogenesis such as the seasonality of embryogenic tissue (ET) initiation or a low embryo production from the ET, a particularly important issue in the case of genetically transformed ETs.  相似文献   

16.
The present investigation was carried out to evaluate the levels of metals and metalloids in okra (Abelmoschus esculentus) irrigated with city wastewater. Soil and vegetable samples from two different sites irrigated with wastewater were wet-digested and analyzed. Arsenic (As) was found higher at both sites and Cr was many-fold lower at both sampling sites. Among all heavy metals, Mn and Zn were abundant. Highest value of coefficient factor was found for Cr and the lowest for Cd. The high transfer value was recorded for Cu at site-I and for Ni at site-II. Copper and Se showed negative and significant correlations between soil and vegetable, whereas Mn, Zn, As, Cd, Cr, and Ni showed positive but non-significant correlations. Pollution load index in this vegetable was found to be higher for Cd and lower for Cu. Health risk index at site-I was in the order of As > Mn > Mo > Pb > Cd > Ni > Zn > Se > Fe > Co > Cr > Cu, whereas the same order was observed at site-II of the sampling locations. Thus, the health risks of metals through ingestion of vegetables were of great concern in the study area.  相似文献   

17.
《农业工程》2021,41(5):491-498
In this study, the effect of seed priming using ascorbic acid (ASA) on three commercial wheat cultivars i.e., Punjab-2011, Faisalabad-2008, and Ujala-2016 under salinity stress in both homogenous and heterogeneous environments has been investigated. It revealed that different levels of salinity have significantly reduced the growth attributes like percent germination, germination index, radical & plumule length, seed vigor index (In-vitro), seedling length, fresh & dry weight, and total chlorophyll content (In-vivo) with subsequent treatments. Salinity stress was induced by using NaCl in three different concentrations (100, 150, and 200 mM). Seeds of the three cultivars primed with 50, 100, and 150 mg/L ascorbic-acids have not only improved percent germination but also considerably reduced germination time and increased germination index (GI) indicating the potential for tolerating saline conditions. Seedling growth (seedling length, Fresh weight, and dry weight) of seeds primed with 50, 100, and 150 mg/L (ASA) was significantly higher than other non-primed seeds under the prevailing saline conditions. Hormonal priming with different concentrations of ascorbic acid was effective, nevertheless, the best results were obtained with 100 and 150 mg/L (ASA) concentrations. We concluded that the delay in germination and seedling growth was mainly due to excessive Na+ accumulation in the seeds of wheat cultivars. On the other hand, seed priming with various concentrations of ascorbic acid has proved to be effective in inducing salt tolerance in terms of germination parameters, seedling characteristics, and chlorophyll retention in the three local commercial wheat cultivars.  相似文献   

18.
Pseudomonas aeruginosa strain HS-D38 was capable of mineralizing p-nitrophenol (PNP) as the sole source of carbon, nitrogen and energy. Degradation of 200 mg L?1 PNP was examined in different media including: (i) MSM (mineral salts medium, no carbon and nitrogen source); (ii) addition of 1% ammonium chloride as additional nitrogen source (ANM); and (iii) addition of 1% glucose as a carbon source (ACM). Complete degradation of 200 mg L?1 PNP was achieved in 12 h in MSM. Additional ammonium chloride accelerated the PNP degradation, but additional glucose inhibited this process. This strain metabolized as high concentration as 300 and 500 mg L?1 of PNP in 14 h and 24 h, respectively, in MSM. The degradation was accompanied by release of stoichiometric amount of nitrate from PNP. During the bacterial growth on PNP, hydroquinone and 1,2,4-benzenetriol were observed as the key degradation intermediates by using a combination of techniques, including HPLC–DAD and LC–ESI/MS compared with the authentic standards. These results indicated that PNP was degraded via a hydroquinone pathway.  相似文献   

19.
Goldfish, Carassius auratus (47 ± 3 g, n = 300) were inoculated intramuscularly (50 μl) with Aeromonas hydrophila (1.8 × 106 cells ml?1). On the 6th day of post-infection the fishes were divided into i) control, without infection fed with normal diet (C), ii) infected fish, fed with normal diet (IU), and infected fishes treated with different doses of iii) 100 mg kg?1, iv) 200 mg kg?1, iv) 400 mg kg?1 and vi) 800 mg kg?1 mixed herbal extracts supplementation diets. Hematological and immunological parameters were determined on week 1, 2 and 4. In infected goldfish were fed diets containing 100 and 200 mg kg?1 of mixed herbal extracts supplementation feeds, the white blood cell (WBC) levels significantly increased (P < 0.05) throughout the experimental trial compared to the control. During the experimental period, the red blood cell (RBC) and haemoglobin (Hb) level in goldfish significantly decreased (P < 0.05) when fish fed with 100 and 200 mg kg?1 of mixed herbal extracts supplementation feeds while it was restored near control when infected fish fed with 400 or 800 mg kg?1 of herbal extracts supplementation feeds. On the other hand, the haematocrit (Ht) values decline significantly (P < 0.05) in 100, 200 and 400 mg kg?1 of mixed herbal supplementation feeding groups on weeks 2 and 4 when compared to control group. The mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values almost significantly differ from the control values. The infected goldfish and treated with 100 or 200 mg kg?1 of herbal supplementation feeds exhibited significantly decline (P < 0.05) in total protein (TP), glucose (GLU) and cholesterol (CHO) levels on week 1–4 whereas it was restored when infected fish fed with 400 or 800 mg kg?1 of herbal supplementation feeds on week 4. In comparison to untreated control goldfish, the respiratory burst activity and phagocytic activity of blood cells was significantly enhanced in infected fish feeding with 200, 400 and 800 mg kg?1 of herbal supplementation feeds compared to the control. On the other hand, infected fish fed with all the doses of mixed herbal supplementation feeds, the lysozyme activity was significantly enhanced throughout the experimental period. This study shows that the infected goldfish treated with 400 and 800 mg kg?1 of herbal supplementation feeds preceding the challenge with live A. hydrophila had 30% and 25% mortality. However, 100 and 200 mg kg?1 of herbal supplementation feeds treated groups were found the percentage mortality 50% and 45%, respectively. Our results indicate that 400 or 800 mg kg?1 of mixed herbal supplementation feeds were restored the altered hematological parameters and triggering the innate immune system of goldfish against A. hydrophila.  相似文献   

20.

Algal extracts provide a safe regime for enhancing crop productivity under stressful conditions. The present study evaluated the efficiency of aqueous and ethanolic extracts of the brown alga Dictyota dichotoma in alleviation of salt stress on germination of rice seeds. Firstly, seeds were germinated using the aqueous extract of D. dichotoma at concentrations of 0, 5, 10, 20, and 50 g L−1, prepared either at room temperature (RTE) or by boiling (BLE). The % germination of rice increased from 84% in non-treated seeds to 100% when treated with 20 g L−1 BLE, although this treatment caused reduced uniformity of germination. Embryo growth was maximum at 20 g L−1 of both extracts with superiority of BLE over RTE. In the second experiment, the effect of 20 g L−1 aqueous and ethanolic extracts relative to a balanced nutrient supply on germination of seeds treated with 0, 40, 90, and 170 mM NaCl was investigated. Salinity reduced % germination with delayed onset but high uniformity of germination, whereas algal amendments counterbalanced the effect of salinity to a greater extent relative to the nutrient supply. Upon withdrawal of salt stress, seeds promptly recovered, with more efficient recovery of seeds exposed to 170 mM than from 90 mM NaCl. The lower recovery of salt-treated seeds compared with the control seed germination suggests that rice suffered from the toxic ion effect of salinity on embryo rather than from the osmotic effect. Extracts of D. dichotoma can enhance and also alleviate salinity stress on rice seed germination.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号