首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings.  相似文献   

3.
4.
The specificity of transfer RNA aminoacylation by cognate aminoacyl-tRNA synthetase is a crucial step for synthesis of functional proteins. It is established that the aminoacylation identity of a single tRNA or of a family of tRNA isoacceptors is linked to the presence of positive signals (determinants) allowing recognition by cognate synthetases and negative signals (antideterminants) leading to rejection by the noncognate ones. The completion of identity sets was generally tested by transplantation of the corresponding nucleotides into one or several host tRNAs which acquire as a consequence the new aminoacylation specificities. Such transplantation experiments were also useful to detect peculiar structural refinements required for optimal expression of a given aminoacylation identity set within a host tRNA. This study explores expression of the defined yeast aspartate identity set into different tRNA scaffolds of a same specificity, namely the four yeast tRNA(Arg) isoacceptors. The goal was to investigate whether expression of the new identity is similar due to the unique specificity of the host tRNAs or whether it is differently expressed due to their peculiar sequences and structural features. In vitro transcribed native tRNA(Arg) isoacceptors and variants bearing the aspartate identity elements were prepared and their aminoacylation properties established. The four wild-type isoacceptors are active in arginylation with catalytic efficiencies in a 20-fold range and are inactive in aspartylation. While transplanted tRNA(1)(Arg) and tRNA(4)(Arg) are converted into highly efficient substrates for yeast aspartyl-tRNA synthetase, transplanted tRNA(2)(Arg) and tRNA(3)(Arg) remain poorly aspartylated. Search for antideterminants in these two tRNAs reveals idiosyncratic features. Conversion of the single base-pair C6-G67 into G6-C67, the pair present in tRNA(Asp), allows full expression of the aspartate identity in the transplanted tRNA(2)(Arg), but not in tRNA(3)(Arg). It is concluded that the different isoacceptor tRNAs protect themselves from misaminoacylation by idiosyncratic pathways of antidetermination.  相似文献   

5.
6.
Using random mutagenesis and a genetic screening in yeast, we isolated 26 mutations that inactivate Saccharomyces cerevisiae arginyl-tRNA synthetase (ArgRS). The mutations were identified and the kinetic parameters of the corresponding proteins were tested after purification of the expression products in Escherichia coli. The effects were interpreted in the light of the crystal structure of ArgRS. Eighteen functional residues were found around the arginine-binding pocket and eight others in the carboxy-terminal domain of the enzyme. Mutations of these residues all act by strongly impairing the rates of tRNA charging and arginine activation. Thus, ArgRS and tRNA(Arg) can be considered as a kind of ribonucleoprotein, where the tRNA, before being charged, is acting as a cofactor that activates the enzyme. Furthermore, by using different tRNA(Arg) isoacceptors and heterologous tRNA(Asp), we highlighted the crucial role of several residues of the carboxy-terminal domain in tRNA recognition and discrimination.  相似文献   

7.
Arginyl-tRNA synthetase has been purified approximately 550 fold from crude extract of human placenta by the following purification steps: Ammonium sulfate fractionation, chromatographies of DEAE-cellulose and CM-Sephadex and Sephadex G-100 gel filtration. Final preparation of this enzyme has specific activity of 123 nmole of arginyl-tRNA formed per mg of protein and was free from other aminoacyl-tRNA synthetase activities. Recognition of various arginine tRNAs with this enzyme was studied using kinetic analysis of arginylation of arginine tRNA and also arginine tRNA dependent ATP-PPi exchange reaction. Affinity of this enzyme with arginine tRNA was determine from Vmas/Km values and it was in the order of rabbit, Chum salmon, B. subtilis, E. coli and yeast in both systems.  相似文献   

8.
9.
During protein biosynthesis, all aminoacylated elongator tRNAs except selenocysteine-inserting tRNA Sec form ternary complexes with activated elongation factor. tRNA Sec is bound by its own translation factor, an elongation factor analogue, e.g. the SELB factor in prokaryotes. An apparent reason for this discrimination could be related to the unusual length of tRNA Sec amino acid-acceptor branch formed by 13 bp. However, it has been recently shown that an aspartylated minihelix of 13 bp derived from yeast tRNA Asp is an efficient substrate for Thermus thermophilus EF-Tu-GTP, suggesting that features other than the length of tRNA Sec prevent its recognition by EF-Tu-GTP. A stepwise mutational analysis of a minihelix derived from tRNA Sec in which sequence elements of tRNA Asp were introduced showed that the sequence of the amino acid- acceptor branch of Escherichia coli tRNA Sec contains a specific structural element that hinders its binding to T.thermophilus EF-Tu-GTP. This antideterminant is located in the 8th, 9th and 10th bp in the acceptor branch of tRNA Sec, corresponding to the last base pair in the amino acid acceptor stem and the two first pairs in the T-stem. The function of this C7.G66/G49.U65/C50.G64 box was tested by its transplantation into a minihelix derived from tRNA Asp, abolishing its recognition by EF-Tu-GTP. The specific role of this nucleotide combination is further supported by its absence in all known prokaryotic elongator tRNAs.  相似文献   

10.
11.
12.
For discrimination between arginine and 19 other amino acids in aminoacylation of tRNA(Arg)-C-C-A by arginyl-tRNA synthetase from baker's yeast, discrimination factors (D) have been determined from kcat and Km values. The lowest values were found for Trp, Cys, Lys (D = 800-8500), showing that arginine is 800-8500 times more often incorporated into tRNA(Arg)-C-C-A than noncognate acids at the same amino acid concentrations. The other noncognate amino acids exhibit D values between 10,000 and 60,000. In aminoacylation of tRNA(Arg)-C-C-A(3'NH2) discrimination factors D1 are in the range 10-600. From these values and AMP formation stoichiometry, pretransfer proof-reading factors II1 were determined; from D values and AMP stoichiometry in aminoacylation of tRNA(Arg)-C-C-A, posttransfer proof-reading factors II2 could be calculated, II1 values between 2 and 120 show that pretransfer proof-reading is the main correction step, posttransfer proof-reading (II2 approximately 1-10) plays a marginal role. Initial discrimination factors due to different Gibbs free energies of binding between arginine and the noncognate amino acids were calculated from discrimination and proof-reading factors. According to a two-step binding process, two factors (I1 and I2) were determined. They can be related to hydrophobic interaction forces and hydrogen bonds that are especially formed by the arginine side chain. A hypothetical 'stopper' model of the amino acid recognition site is discussed.  相似文献   

13.
Wolf J  Gerber AP  Keller W 《The EMBO journal》2002,21(14):3841-3851
We report the characterization of tadA, the first prokaryotic RNA editing enzyme to be identified. Escherichia coli tadA displays sequence similarity to the yeast tRNA deaminase subunit Tad2p. Recombinant tadA protein forms homodimers and is sufficient for site-specific inosine formation at the wobble position (position 34) of tRNA(Arg2), the only tRNA having this modification in prokaryotes. With the exception of yeast tRNA(Arg), no other eukaryotic tRNA substrates were found to be modified by tadA. How ever, an artificial yeast tRNA(Asp), which carries the anticodon loop of yeast tRNA(Arg), is bound and modified by tadA. Moreover, a tRNA(Arg2) minisubstrate containing the anticodon stem and loop is sufficient for specific deamination by tadA. We show that nucleotides at positions 33-36 are sufficient for inosine formation in mutant Arg2 minisubstrates. The anticodon is thus a major determinant for tadA substrate specificity. Finally, we show that tadA is an essential gene in E.coli, underscoring the critical function of inosine at the wobble position in prokaryotes.  相似文献   

14.
15.
A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions.  相似文献   

16.
Protein-RNA recognition between aminoacyl-tRNA synthetases and tRNA is highly specific and essential for cell viability. We investigated the structure-function relationships involved in the interaction of the Escherichia coli tRNA(Asp) acceptor stem with aspartyl-tRNA synthetase. The goal was to isolate functionally active mutants and interpret them in terms of the crystal structure of the synthetase-tRNA(Asp) complex. Mutants were derived from Saccharomyces cerevisiae tRNA(Asp), which is inactive with E. coli aspartyl-tRNA synthetase, allowing a genetic selection of active tRNAs in a tRNA(Asp) knockout strain of E. coli. The mutants were obtained by directed mutagenesis or library selections that targeted the acceptor stem of the yeast tRNA(Asp) gene. The mutants provide a rich source of tRNA(Asp) sequences, which show that the sequence of the acceptor stem can be extensively altered while allowing the tRNA to retain substantial aminoacylation and cell-growth functions. The predominance of tRNA backbone-mediated interactions observed between the synthetase and the acceptor stem of the tRNA in the crystal and the mutability of the acceptor stem suggest that many of the corresponding wild-type bases are replaceable by alternative sequences, so long as they preserve the initial backbone structure of the tRNA. Backbone interactions emerge as an important functional component of the tRNA-synthetase interaction.  相似文献   

17.
18.
Post-translational arginylation consists of the covalent union of an arginine residue to a Glu, Asp, or Cys amino acid at the N-terminal position of proteins. This reaction is catalyzed by the enzyme arginyl-tRNA protein transferase. Using mass spectrometry, we have recently demonstrated in vitro the post-translational incorporation of arginine into the calcium-binding protein calreticulin (CRT). To further study arginylated CRT we raised an antibody against the peptide (RDPAIYFK) that contains an arginine followed by the first 7 N-terminal amino acids of mature rat CRT. This antibody specifically recognizes CRT obtained from rat soluble fraction that was arginylated in vitro and also recognizes endogenous arginylated CRT from NIH 3T3 cells in culture, indicating that CRT arginylation takes place in living cells. Using this antibody we found that arginylation of CRT is Ca2+-regulated. In vitro and in NIH 3T3 cells in culture, the level of arginylated CRT increased with the addition of a Ca2+ chelator to the medium, whereas a decreased arginine incorporation into CRT was found in the presence of Ca2+. The arginylated CRT was observed in the cytosol, in contrast to the non-arginylated CRT that is in the endoplasmic reticulum. Under stress conditions, arginylated CRT was found associated to stress granules. These results suggest that CRT arginylation occurs in the cytosolic pool of mature CRT (defined by an Asp acid N-terminal) that is probably retrotranslocated from the endoplasmic reticulum.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号