首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Steinernema carpocapsae Weiser All strain was compared to Steinernema riobravis Cabanillas, Poinar, and Raulston for control of the root weevil, Diaprepes abbreviatus (L.), in the laboratory and in potted citrus. In the laboratory bioassay, D. abbreviatus larvae were exposed to 30, 60, and 120 nematodes/cm³ in sand. Insect mortality 1 week after application was greater (P ≤ 0.05) for S. riobravis than for S. carpocapsae in the laboratory bioassay. In the greenhouse bioassay, D. abbreviatus larvae were exposed to 3 and 9 nematodes per cm³ of soil in potted citrus. Again, at each rate, mortality was greater (P ≤ 0.05) in pots treated with S. riobravis than in pots treated with S. carpocapsae. The results of this study suggest that S. riobravis is a better biological control agent against D. abbreviatus larvae in potted plants than S. carpocapsae.  相似文献   

2.
The Diaprepes root weevil, Diaprepes abbreviatus, is a pest of vegetables, ornamental plants, sugarcane, and citrus in Florida and the Caribbean. The entomopathogenic nematode, Steinernema riobrave, can reduce larval populations of D. abbreviatus substantially. Efficacy of entomopathogenic nematodes, however, may be affected by culture method and formulation. Using D. abbreviatus as the host, we compared the efficacy of two commercial S. riobrave formulations, a liquid and a waterdispersible granule (WDG), with each other and with in vivo produced S. riobrave. Nematodes in the commercial formulations were produced in vitro through liquid fermentation; the in vivo nematodes were cultured in Galleria mellonella and applied in aqueous suspension. Laboratory experiments measured nematode virulence in plastic cups containing soil and seventh-eighth instar D. abbreviatus. One laboratory experiment was conducted using only fresh nematodes (less than 5 days old); another experiment included WDG nematodes that were stored for 25 days at 10 °C. Two field experiments were conducted in which nematodes were applied either to potted citrus (containing D. abbreviatus larvae) placed beneath mature citrus trees or to soil directly beneath the tree. In the latter experiment, efficacy was determined by measuring mortality of caged D. abbreviatus larvae that were buried beneath the soil surface prior to application. Mortality of D. abbreviatus treated with nematodes ranged from 80-98% and 50-75% in laboratory and field experiments, respectively. In all experiments, we did not detect any significant effects of culture method or formulation.  相似文献   

3.
Entomopathogenic nematodes are used for biological control of insect pests. A method for improved cryopreservation of infective juvenile stage nematodes has been developed using Steinernema carpocapsae and Heterorhabditis bacteriophora. Optimum survival for both species was achieved with 12,000 infective juveniles/ml in glycerol and 7,500/ml in Ringer''s solution. For S. carpocapsae, maximum survival also was observed with 60,000 infective juveniles/ml in glycerol and 25,000/ml in Ringer''s solution. These concentrations resulted in 100% post-cryopreservation survival of S. carpocapsae and 100% retention of original virulence to Galleria mellonella larvae. This is the first report of achieving 100% survival of an entomopathogenic nematode after preservation in liquid nitrogen. Maximum survival of H. bacteriophora following cryopreservation was 87%.  相似文献   

4.
Injection, contact, and soil assays were used to compare infectivity of Heterorhabditis bacteriophora strain HP88 and Steinernema carpocapsae strain All to final instar Galleria mellonella larvae. Under comparable assay conditions, H. bacteriophora produced less Galleria mortality and showed greater within-assay variability in infectivity than S. carpocapsae. Injection of individual S. carpocapsae or H. bacteriophora infective juveniles into Galleria indicated that a comparatively greater percentage of S. carpocapsae was capable of initiating infection. In addition to nematode species, other major components of variability in assay estimations of nematode infectivity were number of nematodes used in the assay, assay type, date of the assay, and possibly, Galleria age.  相似文献   

5.
We exposed honey bee workers and brood to four entomopathogenic nematode species under conditions normally encountered in the hive by spraying nematodes onto combs. Mortality of adult bees exposed to any of the nematode species was less than 10%, and there was no evidence of nematode infection when dead adults were dissected. To assess the impact of nematodes on brood, we used smaller-size honey combs placed in the second story (super) of a hive and large brood combs placed in the main section of the hive. Our results were inconsistent between these two experimental designs. The smaller honey combs sprayed with Steinernema carpocapsae contained the largest number of uncapped ceils, those sprayed with Heterorhabditis baeteriophora or S. riobravis contained an intermediate number of uncapped cells, and control combs and those sprayed with S. glaseri contained the fewest nmnber of uncapped cells. Large combs sprayed with S. riobravis contained more uncapped ceils than controls or those sprayed with S. carpocapsae, although the differences were not significant. Our results do not support the hypothesis that high-temperature-tolerant species of nematodes are necessarily more infective to honey bees.  相似文献   

6.
A filter paper bioassay was developed for testing the efficacy of nematodes and other agents for control of Diaprepes abbreviatus larvae. Surfactants, with and without Steinernema riobravis, were screened first in the filter paper bioassay and then in a potted citrus seedling study. The results of the two assays were in agreement on the relative merits of the compounds tested. Surfactants increased larval mortality at 4 days for the filter paper bioassay and 1 week for the potted plant bioassay. At 8 days for the filter paper bioassay and 2 weeks for the potted plant bioassay, nematodes alone were equal to treatments of nematodes plus surfactants.  相似文献   

7.
The infectivities of Steinernema carpocapsae, S. glaseri, S. scapterisci, and Heterorhabditis bacteriophora to Japanese beetle larvae, Popillia japonica, and house cricket adults, Acheta domesticus, were compared using external exposure and hemocoelic injection. Only H. bacteriophora and S. glaseri caused high P. japonica mortality after external exposure. When nematodes were injected, P. japonica had a strong encapsulation and melanization response to all species except S. glaseri. Heterorhabditis bacteriophora and S. carpocapsae were able to overcome the immune response, but S. scapterisci was not. All species except S. scapterisci were able to kill and reproduce within the host. Only S. scapterisci and S. carpocapsae caused A. domesticus mortality after external exposure. When nematodes were injected, A. domesticus had a strong immune response to all species except S. scapterisci. Steinernema carpocapsae effectively overcame the strong immune response and caused high host mortality, but S. glaseri and H. bacteriophora did not. Steinernema scapterisci caused high host mortality and reproduced, S. glaseri and H. bacteriophora caused low host mortality but only S. glaseri reproduced, and S. carpocapsae was able to kill the host but reproduced poorly. Most (ca. 90%) of the S. carpocapsae in the hemocoel of P. japonica became encapsulated and melanized within 8 hours postinjection. The symbiotic bacterium, Xenorhabduf nematophilus, was often released before this encapsulation and melanization.  相似文献   

8.
Control of Diaprepes abbreviatus by endemic and exotic entomopathogenic nematodes (EPN) was monitored during 2000-2001 in two citrus orchards in central Florida (Bartow and Poinciana). Caged sentinel insect larvae were buried beneath citrus trees for 7 days at 1 to 2-month intervals from April to October each year. At Bartow, the survey occurred in experimental plots that were (i) not treated with commercial EPN, (ii) treated twice annually since 1998 with commercially formulated Steinernema riobrave, or (iii) treated twice annually with S. riobrave and liquid fertilization (15 times/year) occurred in place of dry fertilizer (3 times/year) used in the other treatments. Four endemic EPN species, in addition to S. riobrave, were recovered from the sandy soil at Bartow: S. diaprepesi, Heterorhabditis zealandica, H. indica, and H. bacteriophora. Mean insect mortality in control plots was 39.4% (range = 13% to 74%), with seasonal maxima in May to July each year. Endemic EPN were recovered from 55% (range = 22% to 81%) of the cadavers each month. Total numbers of endemic EPN recovered in all plots during 2 years were directly related to the numbers of adult weevils (D. abbreviatus and Pachnaeus litus) captured in modified Tedder''s traps and inversely related to recovery of S. riobrave. Insect mortality was higher and cadavers containing endemic EPN were more numerous in untreated control plots than in S. riobrave-treated plots, except during months in which S. riobrave was applied. In treated plots, endemic EPN were recovered from cadavers at twice the rate of S. riobrave. Suppression of endemic EPN in plots treated with S. riobrave, combined with inferior persistence by the introduced species, may have attenuated the net efficacy of S. riobrave against D. abbreviatus. In contrast, H. indica was the only endemic nematode recovered from the sandy clay loam soil at Poinciana, where the average mortality of D. abbreviatus was 12% (range 3% to 20%) and incidence of H. indica did not exceed 8%. Results of these surveys suggest that the regional patterns in the abundance and damage to citrus caused by D. abbreviatus in Florida are regulated by endemic EPN and other soilborne enemies of the weevil.  相似文献   

9.
We investigated the ability of entomopathogenic nematodes to infect diamondback moth (DBM),Plutella xylostella (L.) (Lepidoptera: Plutellidae) on a leaf surface. In a leaf disk assay, mortality of late stage DBM larvae ranged from <7% caused bySteinernema kushidai Mamiya to >95% caused byS. carpocapsae (Weiser) All strain. LC50 values forS. carpocapsae, S. riobravis Cabanillas, Poinar & Raulston, andHeterorhabditis bacteriophora Poinar NC1 strain were 14.6, 15.4, and 65.4 nematodes/larva, respectively.S. carpocapsae, S. riobravis, andH. bacteriophora caused 29%, 33%, and 14% mortality of DBM pupae, respectively. DBM mortality caused byS. carpocapsae on radish declined at low (<76%) to moderate (76–90%) RH, because nematode survival and infectivity declined at low (<76%) to moderate (76–90%) RH. However, DBM mortality caused byS. riobravis did not decline with RH.S. riobravis survival declined with RH, but infectivity did not. Overall, nematode survival and infectivity to DBM larvae were lower forS. riobravis than forS. carpocapsae. In addition, DBM mortality was higher on radish plants (pubescent leaves) than on cabbage plants (glaborous leaves).  相似文献   

10.
Steinernema carpocapsae (Breton strain), S. glaseri, and Heterorhabditis bacteriophora were evaluated for their potential to control immature stages of the Japanese beetle, Popillia japonica, on Terceira Island (the Azores). In bioassays carried out at temperatures higher than 15 C, S. glaseri and H. bacteriophora caused 100% mortality of larvae, whereas S. carpocapsae caused 56% larval mortality. At temperatures slightly below 15 C, only S. glaseri remained effective. In field plots, in September, S. glaseri and S. carpocapsae reduced larval populations by 91% and 44%, respectively, when applied at the rate of 10⁶ nematodes/m². In April, S. glaseri caused 31% reduction in numbers of larvae, but S. carpocapsae was ineffective. In colder months (November-February) neither steinernematids nor H. bacteriophora reduced larval populations. Increasing the application rate from 10⁶ to 5 x 10⁶ infective stage S. glaseri per m² increased efficacy from 63% to 79% mortality.  相似文献   

11.
A method for the cryopreservation of third-stage infective juveniles (IJ) of Steinernema carpocapsae and Heterorhabiditis bacteriophora was developed. Cryoprotection was achieved by incubating the nematodes in 22% glycerol (S. carpocapsae) or 14% glycerol (H. bacteriophora) for 24 hours, followed by 70% methanol at 0 C for 10 minutes. The viability of S. carpocapsae frozen in liquid nitrogen as 20 μl volumes spread over cover slip glass was > 80%. Survival of H. bacteriophora frozen on glass varied from 10 to 60% but was improved to > 80% by replacing the glass with filter paper. Cryopreservation and storage of 1-ml aliqots of S. carpocapsae IJ resulted in > 50% survival after 8 months; pathogenicity was retained and normal in vitro development took place. Trehalose and glycerol levels increased and glycogen levels decreased during incubation of S. carpocapsae IJ in glycerol. Normal levels of trehalose, glycerol and glycogen were restored during post freezing rehydration.  相似文献   

12.
Steinernema carpocapsae (Weiser) strain A11, S. feltiae (Filipjev) strain SN, and Heterorhabditis bacteriophora Poinar strains HP88 and Georgia were tested for their efficacy as biological control agents of the pecan weevil, Curculio caryae (Horn), in pecan orchard soil-profile containers under greenhouse conditions. Percentage C. caryae parasitism by S. carpocapsae and H. bacteriophora strain HP88 and Georgia was consistently poor when applied either prior to or following C. caryae entry into the soil, suggesting that these nematode species and (or) their enterobacteria are poor biological control agents of weevil larvae. Soil taken 21 days following application of S. carpocapsae or H. bacteriophora strain HP88 induced a low rate of infection of Galleria mellonella larvae, whereas soil that had been similarily treated with H. bacteriophora strain Georgia induced a moderate rate of infection. Percentage C. caryae parasitism by S. feltiae was consistently low when applied following C. caryae entry into the soil and was inconsistent when applied as a barrier prior to entry of weevil larvae into the soil. Soil taken 21 days following application of S. feltiae induced a high rate of infection of G. mellonella larvae.  相似文献   

13.
The impact of the nematode-parasitic fungus Hirsutella rhossiliensis on the effectiveness of Steinernema carpocapsae, S. glaseri, and Heterorhabditis bacteriophora against Galleria mellonella larvae was assessed in the laboratory. The presence of Hirsutella conidia on the third-stage (J3) cuticle of S. carpocapsae and H. bacteriophora interfered with infection of insect larvae. Conidia on the J3 cuticle of S. glaseri and on the ensheathing second-stage cuticle of H. bacteriophora did not reduce the nematodes'' ability to infect larvae. The LD₅₀ values for S. carpocapsae, S. glaseri, and H. bacteriophora in sand containing H. rhossiliensis were not different from those in sterilized sand when Galleria larvae were added at the same time as the nematodes. However, when Galleria larvae were added 3 days after the nematodes, the LD₅₀ of S. glaseri was higher in Hirsutella-infested sand than in sterilized sand, whereas the LD₅₀ of H. bacteriophora was the same in infested and sterilized sand. Although the LD₅₀ of S. carpocapsae was much higher in Hirsutella-infested sand than in sterilized sand, the data were too variable to detect a significant difference. These data suggest that H. bacteriophora may be more effective than Steinernema species at reducing insect pests in habitats with abundant nematode-parasitic fungi.  相似文献   

14.
The effect of sheath loss on motility and pathogenicity of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, was examined using both naturally and chemically exsheathed (desheathed) infective juveniles. Exsheathed S. carpocapsae showed increased motility on agar compared to sheathed nematodes. The presence of a host increased motility threefold in all S. carpocapsae treatments. These results suggest that activation of S. carpocapsae host finding may result from sheath loss in addition to host stimuli. Desheathed H. bacteriophora were significantly less motile than the sheathed or exsheathed groups. The decreased motility may be due to adverse effects of the chemical treatment for desheathment. Sheath loss did not affect the pathogenicity of either species.  相似文献   

15.
Rearing conditions have been shown to affect several aspects of entomopathogenic nematode biology, including dispersal behavior and infectivity. The present study explores the differences in development rate of Heterorhabditis bacteriophora and Steinernema carpocapsae when infective juveniles (IJ) were collected in water using the standard White trap method vs. natural emergence from cadavers into sand. We exposed Galleria mellonella to IJ entompopathogenic nematodes treated in one of three ways: collected in a White trap, allowed to emerge directly into sand, or collected in a White trap and treated with a cadaver homogenate. When S. carpocapsae IJ were allowed to emerge from cadavers directly into sand and then allowed to infect new hosts, they developed into adults at a faster rate than IJ that were collected with White traps. The difference in development was not due to differential infection rates. No difference in development stages was detected amount the same H. bacteriophora treatments.  相似文献   

16.
Entomopathogenic nematodes are potent biopesticides that can be mass-produced by in vitro or in vivo methods. For in vivo production, consistently high infection rates are critical to efficiency of the process. Our objective was to optimize in vivo inoculation of Steinernema carpocapsae and Heterorhabditis bacteriophora in Galleria mellonella and Tenebrio molitor by determining effects of inoculation method, nematode concentration, and host density. We found immersing hosts in a nematode suspension to be approximately four times more efficient in time than pipeting inoculum onto the hosts. The number of hosts exhibiting signs of nematode infection increased with nematode concentration and decreased with host density per unit area. This is the first report indicating an effect of host density on inoculation efficiency. We did not detect an effect of nematode inoculum concentration on nematode yield per host or per gram of host. Yield was affected by host density in one of the four nematode-host combinations (S. carpocapsae and T. molitor). We conclude that optimization of inoculation parameters is a necessary component of developing an in vivo production system for entomopathogenic nematodes.  相似文献   

17.
Survival of infective juveniles of Steinernema carpocapsae and Steinernema glaseri gradually declined during 16 weeks of observation as the tested soil pH decreased from pH 8 to pH 4. Survival of both species of Steinernema dropped sharply after 1 week at pH 10. Survival or S. carpocapsae and S. glaseri was similar at pH 4, 6, and 8 during the first 4 weeks, but S. carpocapsae survival was significantly greater than S. glaseri at pH 10 through 16 weeks. Steinernema carpocapsae and S. glaseri that had been stored at pH 4, 6, and 8 for 16 weeks, and at pH 10 for 1 or more weeks were not infective to Galleria mellonella larvae. Steinernema carpocapsae survival was significantly greater than that of S. glaseri at oxygen:nitrogen ratios of 1:99, 5:95, and 10:90 during the first 2 weeks, and survival of both nematode species declined sharply to less than 20% after 4 weeks. Survival of both nematode species significantly decreased after 8 weeks as the tested oxygen concentrations decreased from 20 to 1%, and no nematode survival was recorded after 16 weeks. Steinernema carpocapsae pathogenicity was significantly greater than that of S. glaseri during the first 2 weeks. No nematode pathogenicity was recorded at oxygen concentrations of 1, 5, and 10% after 2 weeks and at 20% after 16 weeks.  相似文献   

18.
The plum curculio, Conotrachelus nenuphar, is a major pest of pome and stone fruit. Our objective was to determine virulence and reproductive potential of six commercially available nematode species in C. nenuphar larvae and adults. Nematodes tested were Heterorhabditis bacteriophora (Hb strain), H. marelatus (Point Reyes strains), H. megidis (UK211 strain), Steinernema riobrave (355 strain), S. carpocapsae (All strain), and S. feltiae (SN strain). Survival of C. nenuphar larvae treated with S. feltiae and S. riobrave, and survival of adults treated with S. carpocapsae and S. riobrave, was reduced relative to non-treated insects. Other nematode treatments were not different from the control. Conotrachelus nenuphar larvae were more susceptible to S. feltiae infection than were adults, but for other nematode species there was no significant insect-stage effect. Reproduction in C. nenuphar was greatest for H. marelatus, which produced approximately 10,000 nematodes in larvae and 5,500 in adults. Other nematodes produced approximately 1,000 to 3,700 infective juveniles per C. nenuphar with no significant differences among nematode species or insect stages. We conclude that S. carpocapsae or S. riobrave appears to have the most potential for controlling adults, whereas S. feltiae or S. riobrave appears to have the most potential for larval control.  相似文献   

19.
Spores of an unidentified bacterium were discovered adhering to cuticles of third-stage infective juvenile (IJ) Steinernema diaprepesi endemic in a central Florida citrus orchard. The spores were cup-shaped, 5 to 6 mm in length, and contained a central endospore. Based on 16S rDNA gene sequencing, the bacterium is closely related to the insect pathogens Paenibacillus popilliae and P. lentimorbus. However, unlike the latter bacteria, the Paenibacillus sp. is non-fastidious and grew readily on several standard media. The bacterium did not attach to cuticles of several entomopathogenic or plant-parasitic nematodes tested, suggesting host specificity to S. diaprepesi. Attachment of Paenibacillus sp. to the third-stage cuticle of S. diaprepesi differed from Paenibacillus spp. associated with heterorhabditid entomopathogenic nematodes, which attach to the IJ sheath (second-stage cuticle). The inability to detect endospores within the body of S. diaprepesi indicates that the bacterial association with the nematode is phoretic. The Paenibacillus sp. showed limited virulence to Diaprepes abbreviatus, requiring inoculation of larvae with 108 spores to achieve death of the insect and reproduction of the bacterium. The effect of the bacterium on the nematode population biology was studied in 25-cm-long vertical sand columns. A single D. abbreviatus larva was confined below 15-cm depth, and the soil surface was inoculated with either spore-free or spore-encumbered IJ nematodes. After 7 days, the proportion of IJ below 5-cm depth was seven-fold greater for spore-free IJ than for spore-encumbered nematodes. Mortality of D. abbreviatus larvae was 72% greater (P <= 0.01) for spore-free compared to spore-encumbered S. diaprepesi. More than 5 times as many progeny IJs (P <= 0.01) were produced by spore-free compared to spore-encumbered nematodes. These data suggest that the bacterium is a component of the D. abbreviatus food web with some potential to regulate a natural enemy of the insect.  相似文献   

20.
The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the highest freeze tolerance, particularly in the 24-h exposure period. Unlike desiccation tolerance, substantial intraspecies variation in freeze tolerance was observed among H. bacteriophora and S. riobrave strains, yet within species variation was not detected among S. carpocapsae strains. Correlation analysis did not detect a relationship between freezing and desiccation tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号