首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ICE family proteases have been implicated as important effectors of the apoptotic pathway, perhaps acting hierarchically in a protease cascade. Using cleavage of endogenous protease substrates as probes, three distinct tiers of ICE-like activity were observed after Fas ligation in Jurkat cells. The earliest cleavage detected (30 min) was of fodrin, and produced a 150 kDa fragment. The second phase of cleavage (50 min) involved PARP, U1-70kDa and DNA-PKcs, all substrates of the CPP32-like proteases. Lamin B cleavage was observed during the third cleavage phase (90 min). Distinct inhibition profiles obtained using a panel of peptide-based inhibitors of ICE-like proteases clearly distinguished the three different cleavage phases. These studies provide evidence for a sequence of ICE-like proteolytic activity during apoptosis. The early fodrin cleavage, producing a 150 kDa fragment, identifies an ICE-like activity proximal to CPP32 in Fas-induced Jurkat cell apoptosis.  相似文献   

2.
Identification of the processing/activation of multiple interleukin-1β converting enzyme (ICE)–like proteases and their target substrates in the intact cell is critical to our understanding of the apoptotic process. In this study we demonstrate processing/activation of at least four ICE-like proteases during the execution phase of apoptosis in human monocytic tumor THP.1 cells. Apoptosis was accompanied by processing of Ich-1, CPP32, and Mch3α to their catalytically active subunits, and lysates from these cells displayed a proteolytic activity with kinetics, characteristic of CPP32/Mch3α but not of ICE. Fluorescence-activated cell sorting was used to obtain pure populations of normal and apoptotic cells. In apoptotic cells, extensive cleavage of Ich-1, CPP32, and Mch3α was observed together with proteolysis of the ICE-like protease substrates, poly (ADP-ribose) polymerase (PARP), the 70-kD protein component of U1 small nuclear ribonucleoprotein (U170K), and lamins A/B. In contrast, no cleavage of CPP32, Mch3α or the substrates was observed in normal cells. In cells exposed to an apoptotic stimulus, some processing of Ich-1 was detected in morphologically normal cells, suggesting that cleavage of Ich-1 may occur early in the apoptotic process. The ICE-like protease inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK), inhibited apoptosis and cleavage of Ich-1, CPP32, Mch3α, Mch2α, PARP, U1-70K, and lamins. These results suggest that Z-VAD.FMK inhibits apoptosis by inhibiting a key effector protease upstream of Ich-1, CPP32, Mch3α, and Mch2α. Together these observations demonstrate that processing/activation of Ich-1, CPP32, Mch3α, and Mch2α accompanies the execution phase of apoptosis in THP.1 cells. This is the first demonstration of the activation of at least four ICE-like proteases in apoptotic cells, providing further evidence for a requirement for the activation of multiple ICE-like proteases during apoptosis.  相似文献   

3.
DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase that has critical roles in DNA double-strand break repair, as well as B- and T-cell antigen receptor rearrangement. The DNA-PK enzyme consists of the Ku regulatory subunit and a 450-kDa catalytic subunit termed DNA-PK(CS). Both of these subunits are autoantigens associated with connective tissue diseases such as systemic lupus erythematosus (SLE) and scleroderma. In this report, we show that DNA-PK(CS) is cleaved during poliovirus infection of HeLa cells. Cleavage was visible as early as 1.5 h postinfection (hpi) and resulted in an approximately 40% reduction in the levels of native protein by 5.5 hpi. Consistent with this observation, the activity of the DNA-PK(CS) enzyme was also reduced during viral infection, as determined by immunoprecipitation kinase assays. Although it has previously been shown that DNA-PK(CS) is a substrate of caspase-3 in vitro, the protein was still cleaved during poliovirus infection of the caspase-3-deficient MCF-7 cell line. Cleavage was not prevented by infection in the presence of a soluble caspase inhibitor, suggesting that cleavage in vivo was independent of host caspase activation. DNA-PK(CS) is directly cleaved by a picornaviral 2A protease in vitro, producing a fragment similar in size to the cleavage product observed in vivo. Taken together, our results indicate that DNA-PK(CS) is cleaved by the 2A protease during poliovirus infection. Proteolytic cleavage of DNA-PK(CS) during poliovirus infection may contribute to inhibition of host immune responses. Furthermore, cleavage of autoantigens by viral proteases may target these proteins for the autoimmune response by generating novel, or "immunocryptic," protein fragments.  相似文献   

4.
Our previous work showed that chelation of intracellular Zn2+ with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) induces apoptosis in rat thymocytes. The molecular mechanism involved in TPEN-triggered apoptosis remains unknown, except that it is a Ca2+-independent process. In the present study, we show that TPEN is unable to induce DNA fragmentation when added to isolated thymocyte nuclei, indicating that activation of a cytoplasmic component is essential for TPEN-induced apoptosis. Since cytosolic proteases related to interleukin-1beta-converting enzyme (ICE) are implicated as key activators of apoptosis in many different systems, we investigated the possible involvement of such proteases in TPEN-induced apoptosis. We found that treatment of thymocytes with TPEN caused an early degradation of nuclear poly(ADP-ribose) polymerase (PARP) and lamin prior to DNA cleavage. This could be inhibited by Z-Val-Ala-Asp-chloromethylketone (VADcmk), an inhibitor of ICE-like proteases, but not by an inhibitor of Ca2+-regulated serine protease. Jurkat T cells also underwent extensive DNA fragmentation when incubated with TPEN. A cytosolic fraction, prepared from TPEN-treated Jurkat cells, produced extensive DNA fragmentation when applied to isolated thymocyte nuclei, whereas the cytoplasmic extract from untreated cells was ineffective either alone or together with TPEN. The apoptosis-inducing activity in cytosolic fraction from TPEN-treated Jurkat cells was blocked by incubating cells in the presence of VADcmk or another inhibitor of ICE-like proteases, Ac - Asp - Glu - Val - Asp-aldehyde (DEVD-CHO), which has been found to competitively inhibit CPP32/apopain. An increase in enzyme activity that cleaves Ac-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC), a fluorogenic substrate of CPP32/apopain and Mch3alpha, was detected in TPEN-treated thymocytes and Jurkat cells. In addition, the proteolytic cleavage of CPP32 resulting in the formation of two active fragments (p17 and p12) was observed in cytosolic extracts from TPEN-treated Jurkat cells, but not in extracts which were prepared from cells treated with TPEN in the presence of VADcmk or DEVD-CHO. Our results suggest that activation of cytosolic ICE-like proteases is an essential step in TPEN-induced apoptosis, and that CPP32/apopain is critically involved in this process.  相似文献   

5.
L Dubrez  I Savoy  A Hamman    E Solary 《The EMBO journal》1996,15(20):5504-5512
We investigated the role of proteases in the pathway that leads from specific DNA damage induced by etoposide (VP-16), a topoisomerase II inhibitor, to apoptotic DNA fragmentation in the U937 human leukemic cell line. In a reconstituted cell-free system, Triton-soluble extracts from VP-16-treated cells induced internucleosomal DNA fragmentation in nuclei from untreated cells. This effect was inhibited by the tetrapeptide Ac-DEVD-CHO, a competitive inhibitor of the interleukin-1 beta-converting enzyme (ICE)-related protease CPP32, but was not influenced by Ac-YVAD-CHO and Ac-YVAD-CMK, two specific inhibitors of ICE. The three tetrapeptides inhibited Fas-mediated apoptotic DNA fragmentation in the cell-free system. Internucleosomal DNA fragmentation, triggered by either VP-16 or an anti-Fas antibody, was associated with proteolytic cleavage of the poly(ADP-ribose)polymerase (PARP), a decrease in the level of 32 kDa CPP32 proenzyme and the appearance of the CPP32 p17 active subunit. Conversely, the expression of Ich-1L, another ICE-like protease, remained stable in apoptotic U937 cells. Several cysteine and serine protease inhibitors prevented apoptotic DNA fragmentation by acting either upstream or downstream of the DEVD-sensitive protease(s) activation and PARP cleavage. We conclude that a DEVD-sensitive step, which could involve CPP32, plays a central role in the proteolytic pathway that mediates apoptotic DNA fragmentation in VP-16-treated leukemic cells at the crossing with Fas-mediated pathway.  相似文献   

6.
DNA-dependent protein kinase is inhibited by trifluoperazine   总被引:5,自引:0,他引:5  
The DNA-dependent protein kinase (DNA-PK) is a serine/threonine nuclear kinase, important for the repair of DNA double strand breaks (DSB). Cells defective in DNA-PK show increased sensitivity to ionising radiation and different DNA-damaging drugs, such as cisplatinum. Increased sensitivity to cisplatinum has previously been noted in the presence of phenothiazines. We tested a panel of phenothiazines and one thioxanthen for any influence upon the activity and expression of DNA-PK in a nonsmall cell lung cancer cell line, U-1810. The activity of DNA-PK was completely inhibited in cell lysate and in purified enzyme by 200 microM TFP. DNA-PKcs and Ku86 cleavage were evident in U-1810 cells after 30 min incubation with 100 microM TFP, along with changes in the cells consistent with apoptosis. Our study suggests that phenothiazines and thioxanthens, acting through DNA-PK, have the potential to enhance the effects of DNA damaging agents.  相似文献   

7.
The phosphorylation of histone H2AX at serine 139 is one of the earliest responses of mammalian cells to ionizing radiation-induced DNA breaks. DNA breaks are also generated during the terminal stages of apoptosis when chromosomal DNA is cleaved into oligonucleosomal pieces. Apoptotic DNA fragmentation and the consequent chromatin condensation are important for efficient clearing of genomic DNA and nucleosomes and for protecting the organism from auto-immmunization and oncogenic transformation. In this study, we demonstrate that H2AX is phosphorylated during apoptotic DNA fragmentation in mouse, Chinese hamster ovary, and human cells. We have previously shown that ataxia telangiectasia mutated kinase (ATM) is primarily responsible for H2AX phosphorylation in murine cells in response to ionizing radiation. Interestingly, we find here that DNA-dependent protein kinase (DNA-PK) is solely responsible for H2AX phosphorylation during apoptosis while ATM is dispensable for the process. Moreover, the kinase activity of DNA-PKcs (catalytic subunit of DNA-PK) is specifically required for the induction of gammaH2AX. We further show that DNA-PKcs is robustly activated in apoptotic cells, as evidenced by autophosphorylation at serine 2056, before it is inactivated by cleavage. In contrast, ATM is degraded well before DNA fragmentation and gammaH2AX induction resulting in the predominance of DNA-PK during the later stages of apoptosis. Finally, we show that DNA-PKcs autophosphorylation and gammaH2AX induction occur only in apoptotic nuclei with characteristic chromatin condensation but not in non-apoptotic nuclei from the same culture establishing the most direct link between DNA fragmentation, DNA-PKcs activation, and H2AX phosphorylation. It is well established that DNA-PK is inactivated by cleavage late in apoptosis in order to forestall DNA repair. Our results demonstrate, for the first time, that DNA-PK is actually activated in late apoptotic cells and is able to initiate an early step in the DNA-damage response, namely H2AX phosphorylation, before it is inactivated by proteolysis.  相似文献   

8.
9.
Non-homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks (DSBs) requires the formation of a Ku70/Ku80/DNA-PKcs complex at the DSB sites. A previous study has revealed Ku80 cleavage by caspase-3 during apoptosis. However, it remains largely unknown whether and how Ku80 cleavage affects its function in mediating NHEJ-mediated DNA repair. Here we report that Ku80 can be cleaved by caspases-2 at D726 upon a transient etoposide treatment. Caspase-2-mediated Ku80 cleavage promotes Ku80/DNA-PKcs interaction as the D726A mutation diminished Ku80 interaction with DNA-PKcs, while a Ku80 truncate (Ku80 ΔC6) lacking all the 6 residues following D726 rescued the weakened Ku80/DNA-PKcs interaction caused by caspase-2 knockdown. As a result, depletion or inhibition of caspase-2 impairs NHEJ-mediated DNA repair, and such impairment can be reversed by Ku80 ΔC6 overexpression. Taken together, our current study provides a novel mechanism for regulating NHEJ-mediated DNA repair, and sheds light on the function of caspase-2 in genomic stability maintenance.  相似文献   

10.
11.
N-Tosyl-L-phenylalanyl chloromethyl ketone (TPCK), a chymotrypsin-like serine protease inhibitor, affected apoptosis in human monocytic THP.1 cells differently dependent on both the concentration used and the apoptotic stimulus. TPCK (50 - 75 microM) induced both biochemical and ultrastructural changes characteristic of apoptosis, including proteolysis of poly (ADP-ribose) polymerase (PARP) and lamins together with formation of large kilobase pair fragments of DNA, particularly of 30 - 50 and 200 - 300 kilobase pairs in length but without internucleosomal cleavage of DNA. The induction of apoptosis by TPCK also involved the processing of CPP32 and Mch 3 to their catalytically active subunits. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK), an ICE-like protease inhibitor, completely prevented all the biochemical and morphological changes induced by TPCK demonstrating the involvement of ICE-like proteases in the execution phase of apoptosis. Lower concentrations of TPCK (5 - 20 microM) prevented internucleosomal cleavage of DNA induced by other apoptotic stimuli. TPCK (10 microM) inhibited cell death induced by etoposide but potentiated that induced by cycloheximide demonstrating that it differentially affected apoptosis in THP.1 cells dependent on the stimulus used. These results are consistent with at least three distinct TPCK targets, one being important for cell survival, the second in facilitating internucleosomal cleavage of DNA and the third in the modulation of apoptosis induced by different apoptotic stimuli.  相似文献   

12.
Abstract: Proteases of the interleukin-1β converting enzyme (ICE) family have been implicated as mediators of apoptosis in several cell types. Here we report the ability of peptide inhibitors of ICE-like proteases to inhibit apoptosis of cultured cerebellar granule neurones caused by reduction of extracellular K+ levels and by the broad-spectrum protein kinase inhibitor staurosporine. Unlike apoptosis induced by K+ deprivation, staurosporine-induced neuronal death does not require new protein synthesis. The ICE-like protease inhibitor benzyloxycarbonyl-Val-Ala-Asp ( O -methyl)fluoromethyl ketone (zVAD-fmk) was found to be extremely effective at preventing staurosporine-induced death of cerebellar granule neurones and yet was completely ineffective in preventing K+ deprivation-induced death. Staurosporine induced cleavage of the 116-kDa poly(ADP-ribose) polymerase enzyme, a substrate of ICE-like proteases, to the 85-kDa product, and this cleavage was also blocked by zVAD. By comparison, K+ deprivation led to the disappearance of the 116-kDa protein, with no detectable increase in level of the 85-kDa cleavage product. Taken together, these results imply the existence of divergent ICE-like protease pathways in a CNS model of neuronal apoptosis.  相似文献   

13.
Proteolytic cleavage of key cellular proteins by caspases (ICE, CPP32, and Ich-1/Nedd2) may be crucial to the apoptotic process. The retinoblastoma tumor suppressor gene is a negative regulator of cell growth and the retinoblastoma protein (pRb) exhibits anti-apoptotic function. We show that pRb is cleaved during apoptosis induced by either UV irradiation or anti-Fas antibody. Our studies implicate CPP32-like activity in the proteolytic cleavage of pRb. The kinetics of proteolytic cleavage of pRb during apoptosis differ from that observed for other cellular proteins, suggesting that the specific cleavage of pRb during apoptosis may be an important event.  相似文献   

14.
Expression of DNA-dependent protein kinase in human granulocytes   总被引:3,自引:0,他引:3  
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in PMN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration. In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.  相似文献   

15.
Reduced thiols (e.g., cysteine) are important in the maintenance of lymphocyte cell viability and growth. L1210 monocytic leukaemia cells were known to have a limited ability to uptake cystine, and they require cysteine for cell growth. L1210 cells underwent apoptosis when cultured without thiol-bearing and dithiol-cleaving compounds, adding thiols suppressed the apoptosis and promoted cell growth. A specific inhibitor of interleukin-1 -converting enzyme (ICE)-like and CPP32-like proteases could suppress L1210 cell apoptosis induced by thiol deprivation. The cell lysates of apoptotic L1210 cells exhibited protease activity that could cleave DEVD-AMC, but not YVAD-AMC, and so CPP32-like proteases, but not ICE-like proteases, were activated and participated in apoptosis. The addition of thiols could suppress CPP32-like protease activation. Although the cell death-suppressor bcl-2-family proteins (bcl-2 and bcl-XL) were recently found to suppress the activation of CPP32-like proteases, the expression levels of death-suppressor bcl-2-family proteins did not change when thiols were added. These results suggest that reduced thiols maintain L1210 cell survival by inhibiting the activation of CPP32-like proteases without changing the anti-apoptotic bcl-2-family protein expression.  相似文献   

16.
DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break (DSB) repair and V(D)J recombination. We have isolated a new X-ray-sensitive CHO cell line, XR-C1, which is impaired in DSB repair and which was assigned to complementation group 7, the group that is defective in the XRCC7 / SCID ( Prkdc ) gene encoding the catalytic subunit of DNA-PK (DNA-PKcs). Consistent with this complementation analysis, XR-C1 cells lackeddetectable DNA-PKcs protein, did not display DNA-PK catalytic activity and were complemented by the introduction of a single human chromosome 8 (providing the Prkdc gene). The impact of the XR-C1 mutation on V(D)J recombination was quite different from that found in most rodent cells defective in DNA-PKcs, which are preferentially blocked in coding joint formation, whereas XR-C1 cells were defective in forming both coding and signal joints. These results suggest that DNA-PKcs is required for both coding and signal joint formation during V(D)J recombination and that the XR-C1 mutant cell line may prove to be a useful tool in understanding this pathway.  相似文献   

17.
Protein kinase Cδ (PKCδ) is proteolytically cleaved and activated at the onset of apoptosis induced by DNA-damaging agents, tumor necrosis factor, and anti-Fas antibody. A role for PKCδ in apoptosis is supported by the finding that overexpression of the catalytic fragment of PKCδ (PKCδ CF) in cells is associated with the appearance of certain characteristics of apoptosis. However, the functional relationship between PKCδ cleavage and induction of apoptosis is unknown. The present studies demonstrate that PKCδ associates constitutively with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The results show that PKCδ CF phosphorylates DNA-PKcs in vitro. Interaction of DNA-PKcs with PKCδ CF inhibits the function of DNA-PKcs to form complexes with DNA and to phosphorylate its downstream target, p53. The results also demonstrate that cells deficient in DNA-PK are resistant to apoptosis induced by overexpressing PKCδ CF. These findings support the hypothesis that functional interactions between PKCδ and DNA-PK contribute to DNA damage-induced apoptosis.  相似文献   

18.
Several lines of evidence support a role for protease activation during apoptosis. Herein, we investigated the involvement of several members of the CASP (cysteine aspartic acid-specific protease; CED-3- or ICE-like protease) gene family in fodrin and actin cleavage using mouse ovarian cells and HeLa cells combined with immunoblot analysis. Hormone deprivation-induced apo-ptosis in granulosa cells of mouse antral follicles incubated for 24 h was attenuated by two specific peptide inhibitors of caspases, zVAD-FMK and zDEVD-FMK (50-500 microM), confirming that these enzymes are involved in this paradigm of cell death. Proteolysis of actin was not observed in follicles incubated in vitro while fodrin was cleaved to the 120 kDa fragment that accompanies apoptosis. Fodrin, but not actin, cleavage was also detected in HeLa cells treated with various apoptotic stimuli. These findings suggest that, in contrast to recent data, proteolysis of cytoplasmic actin may not be a component of the cell death cascade. To confirm and extend these data, total cell proteins collected from mouse ovaries or non-apoptotic HeLa cells were incubated without and with recombinant caspase-1 (ICE), caspase-2 (ICH-1) or caspase-3 (CPP32). Immunoblot analysis revealed that caspase-3, but not caspase-1 nor caspase-2, cleaved fodrin to a 120 kDa fragment, wheres both caspases-1 and -3 (but not caspase-2) cleaved actin. We conclude that CASP gene family members participate in granulosa cell apoptosis during ovarian follicular atresia, and that collapse of the granulosa cell cytoskeleton may result from caspase-3-catalyzed fodrin proteolysis. However, the discrepancy in the data obtained using intact cells (actin not cleaved) versus the cell-free extract assays (actin cleaved) raises concern over previous conclusions drawn related to the role of actin cleavage in apoptosis.  相似文献   

19.
Apoptosis has recently been extensively studied and multiple factors have been implicated in its regulation. It remains unclear how these factors are ordered in the cell death pathway. Here we investigate the relationship between the inhibitor of apoptosis, bcl-2, and the PARP protease, prlCE/CPP32, recently implicated in apoptosis. Using PARP proteolysis as an indicator of the activation of the PARP protease, we find that the chemotherapeutic agent, etoposide, induces apoptosis and PARP proteolysis in Molt4 cells as early as 4 h with cell death lagging behind this event. In contrast, Molt4 cells that over-express bcl-2 show no PARP proteolysis or cell death. In order to determine if bcl-2 inhibits the PARP protease or its activation, we developed a cell-free system. Using this system with extracts from etoposide-treated cells and purified bovine PARP, we demonstrate that extracts from bcl-2 over-expressing cells cause little or no PARP proteolysis. Whereas, extracts from control vector cells contain an active PARP protease. This protease is inhibited by the tetrapeptide ICE-like protease inhibitor, YVAD-chloromethylketone. Interestingly, this protease is not inhibited by the addition of purified bcl-2 protein. These results rule out that bcl-2 directly inhibits the active protease or that it has an effect downstream of prlCE/CPP32 such as preventing access to the PARP substrate. These results also demonstrate a role of bcl-2 in interfering with an upstream signal required to activate the PARP protease and allow us to begin to order the components in the apoptotic pathway.  相似文献   

20.
Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs), and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE) and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ) that relies on the DNA dependent protein kinase (DNA-PK) activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue. Our results show that DNA DSBs repair activity is up regulated during the early commitment into adipogenesis due to an up-regulation of DNA-PK expression and activity. In opposition to the general view that DNA DSBs repair is decreased during differentiation, our results demonstrate that an up-regulation of this process might be observed in post-mitotic long-lived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号