首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syringa pinnatifolia is an endangered endemic species in China with important ornamental and medicinal value, and it needs urgent protection. Here, we report the complete chloroplast (cp) genome structure of S. pinnatifolia and its evolution is inferred through comparative studies with related species. The S. pinnatifolia cp genome was 155 326 bp and contained a large single copy region (LSC) of 86 167 bp and a small single copy region (SSC) of 17 775 bp, as well as a pair of inverted repeat regions (IRs) of 25 692 bp. A total of 113 unique genes were annotated, including 79 protein‐coding genes, 30 tRNA genes and four rRNA genes. The GC content of the S. pinnatifolia cp genome was 37.9%, and the corresponding values in the LSC, SSC and IR regions were 36.0, 32.1, 43.2% respectively. Repetitive sequences analysis revealed that the S. pinnatifolia cp genome contained 38 repeats. Microsatellite marker detection analysis identified 253 simple sequence repeats (SSRs), which provides opportunities for future studies of the population genetics and phylogenetic relationships of Syringa. Phylogenetic analysis of 29 selected cp genomes revealed that S. pinnatifolia is closely related to Syringa vulgaris and all 27 Lamiales species formed a clade separate from the two outgroup species. This newly characterized S. pinnatifolia chloroplast genome will provide a useful genomic resource of phylogenetic inference and the development of more genetic markers for species discrimination and population studies in the genus Syringa.  相似文献   

2.
Apple (Malus × domestica) is one of the most important temperate fruits. To better understand the molecular basis of this species, we characterized the complete chloroplast (cp) genome sequence downloaded from Genome Database for Rosaceae. The cp genome of apple is a circular molecule of 160068bp in length with a typical quadripartite structure of two inverted repeats (IRs) of 26352bp, separated by a small single copy region of 19180bp (SSC) and a large single copy region (LSC) of 88184bp. A total of 135 predicted genes (115 unique genes, and another 20 genes were duplicated in the IR) were identified, including 81 protein coding genes, four rRNA genes and 30 tRNA genes. Three genes of ycf15, ycf68 and infA contain several internal stop codons, which were interpreted as pseudogenes. The genome structure, gene order, GC content and codon usage of apple are similar to the typical angiosperm cp genomes. Thirty repeat regions (≥30bp) were detected, twenty one of which are tandem, six are forward and three are inverted repeats. Two hundred thirty seven simple sequence repeat (SSR) loci were revealed and most of them are composed of A or T, contributing to a distinct bias in base composition. Additionally, average 10000bp non coding region contains 24 SSR sites, while protein coding region contains five SSR sites, indicating an uneven distribution of SSRs. The complete cp genome sequence of apple reported in this paper will facilitate the future studies of its population genetics, phylogenetics and chloroplast genetic engineering.  相似文献   

3.
Taxus chinensis var. mairei (Taxaceae) is a domestic variety of yew species in local China. This plant is one of the sources for paclitaxel, which is a promising antineoplastic chemotherapy drugs during the last decade. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of T. chinensis var. mairei. The T. chinensis var. mairei cp genome is 129,513 bp in length, with 113 single copy genes and two duplicated genes (trnI-CAU, trnQ-UUG). Among the 113 single copy genes, 9 are intron-containing. Compared to other land plant cp genomes, the T. chinensis var. mairei cp genome has lost one of the large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperm such as Cycas revoluta and Ginkgo biloba L. Compared to related species, the gene order of T. chinensis var. mairei has a large inversion of ~ 110 kb including 91 genes (from rps18 to accD) with gene contents unarranged. Repeat analysis identified 48 direct and 2 inverted repeats 30 bp long or longer with a sequence identity greater than 90%. Repeated short segments were found in genes rps18, rps19 and clpP. Analysis also revealed 22 simple sequence repeat (SSR) loci and almost all are composed of A or T.  相似文献   

4.
Magnolia grandiflora is an important medicinal,ornamental and horticultural plant species.The chloroplast(cp) genome of M.grandiflora was sequenced using a 454 sequencing platform and the genome structure was compared with other related species.The complete cp genome of M.grandiflora was 159623 bp in length and contained a pair of inverted repeats(IR) of 26563 bp separated by large and small single copy(LSC,SSC) regions of 87757 and 18740 bp,respectively.A total of 129 genes were successfully annotated,18 of which included introns.The identity,number and GC content of M.grandiflora cp genes were similar to those of other Magnoliaceae species genomes.Analysis revealed 218 simple sequence repeat(SSR) loci,most composed of A or T,contributing to a bias in base composition.The types and abundances of repeat units in Magnoliaceae species were relatively conserved and these loci will be useful for developing M.grandiflora cp genome vectors.In addition,results indicated that the cp genome size in Magnoliaceae species and the position of the IR border were closely related to the length of the ycf1 gene.Phylogenetic analyses based on 66 shared genes from 30 species using maximum parsimony(MP) and maximum likelihood(ML) methods provided strong support for the phylogenetic position of Magnolia.The availability of the complete cp genome sequence of M.grandiflora provides valuable information for breeding of desirable varieties,cp genetic engineering,developing useful molecular markers and phylogenetic analyses in Magnoliaceae.  相似文献   

5.
Sorbus setschwanensis Koehne is a pinnate-leaved Sorbus s.str. species endemic to China with narrow distribution and intriguing phylogeny that needs wider attention. In this paper, the complete chloroplast (cp) genome of S. setschwanensis is reported, and its phylogenetic position is analyzed. The complete cp genome of S. setschwanensis is 160 064 bp in size with 36.50% GC content. It has a typical quadripartite structure including a pair of inverted repeat regions (IRs) of 26 378 bp that separates a large single copy (LSC) region of 86 013 bp and a small single copy (SSC) region of 19 295 bp. The cp genome encodes 108 genes, comprising 76 protein-coding genes, 28 tRNA genes and 4 rRNA genes. Additionally, 52 simple sequence repeats (SSRs) and 43 dispersed repeats were identified. Comparison of the whole cp genome with those of other Sorbus species showed an overall high degree of sequence similarity, but there are six highly variable regions (trnR-atpA, petN-psbM, ndhC-trnV, trnE-trnT, trnT-trnL and rpl32-trnL) located in intergenic spacers that may be useful as molecular markers in future population genetic and phylogenetic studies in the genus. Phylogenetic analyses based on 108 coding genes from 25 species in Rosaceae revealed that S. setschwanensis is nested within Sorbus sect. Sorbus together with other pinnately leaved species, but does not form a sister lineage to S. rufopilosa belonging to the same series Multijugae. Thus, the systematic position of S. setschwanensis and relationships with other species in the genus needs to be further studied.  相似文献   

6.
苹果叶绿体基因组特征分析   总被引:2,自引:0,他引:2  
苹果(Malus×domestica)是最重要的温带水果之一。为了能更好的了解本种的分子生物学基础.对已发布的苹果叶绿体全基因组序列进行了结构特征分析。结果显示苹果的叶绿体基因组全长为160068bp,具有典型的被子植物叶绿体基因组的环状四分体结构,包含大单拷贝区(LSC),小单拷贝区(SSC)和两个反向互补重复区(IRs),长度分别为88184bp,19180bp和26352bp。基因组共有135个基因(20个基因分布在反向互补重复区,因此整个基因组包含115个不同的基因)。按照功能进行分类,这115个基因包括81个蛋白质编码基因,4个rRNA编码基因和30个tRNA基因。其中,ycf15.ycf68和infA三个基因包含多个终止密码子,推测可能为假基因。苹果的基因组结构.基因顺序.GC含量和密码子使用偏好均与典型的被子植物叶绿体基因组类似。在苹果的叶绿体基因组中,共检测到30个大于30bp的重复序列,其中包括21串联重复,6个正向重复和3个反向重复序列;并检测到237个简单重复序列(SSR)位点,大部分的SSR位点都偏向于A或者T组成。此外,每10000bp非编码区平均分布有24个SSR位点,而编码区平均有5个SSR位点,表明SSRs在叶绿体基因组上的分布是不均匀的。本文对苹果叶绿体基因组序列特征的报道,将有助于促进该种的居群遗传学、系统发育和叶绿体基因工程的研究。  相似文献   

7.
8.
Pomegranate (Punica granatum L.) is one of the oldest known edible fruits. It has grown in popularity and is a profitable fruit crop due to its attractive features including a bright red appearance and its biological activities. Scientific exploration of the genetics and evolution of these beneficial traits has been hampered by limited genomic information. In this study, we sequenced the complete chloroplast (cp) genome of the native P. granatum (cultivar Helow) cultivated in the mountains of Jabal Al-Akhdar, Oman. The results revealed a P. granatum cp genome length of 158,630 bp, characterized by a relatively conserved structure containing 2 inverted repeat regions of 25,466 bp, an 18,686 bp small single copy regions, and an 89,015 bp large single copy region. The 86 protein-coding genes included 37 transfer RNA genes and 8 ribosomal RNA genes. Comparison of the P. granatum whole cp genome with seven Lagerstroemia species revealed an overall high degree of sequence similarity with divergence among intergenic spacers. The location, distribution, and divergence of repeat sequences and shared genes of the Punica and Lagerstroemia species were highly similar. Analyses of nucleotide substitution, insertion/deletions, and highly variable regions in these cp genomes identified potential plastid markers for taxonomic and phylogenetic studies in Myrtales. A phylogenetic study of the cp genomes and 76 shared coding regions generated similar cladograms. The complete cp genome of P. granatum will aid in taxonomical studies of the family Lythraceae.  相似文献   

9.
Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome.  相似文献   

10.
Alyssum desertorum (Alysseae, Brassicaceae) is an annual spring ephemeral plant whose life cycle is only 2–3 months. It typically has high photosynthetic capacity and a high growth rate. However, little was known about the chloroplast (cp) genome structure of this species. Furthermore, the phylogenetic position of the tribe Alysseae relative to other tribes in the Brassicaceae has not been established and there appear to be inconsistences between different DNA markers. This study is the first report on a cp genome of the genus Alyssum and discusses the phylogenetic relationships of the tribe Alysseae relative to other tribes in the family. The complete cp genome of A. desertorum was 151 677 bp in size and is thus the smallest cp genome of Brassicaceae sequenced to date. The genome includes a large single‐copy region of 81 551 bp, a small single‐copy region of 17 804 bp, and two inverted repeats of 26 161 bp each. The genome contains 132 genes, including 86 protein‐coding genes (PCGs), 38 tRNA genes and 8 rRNA genes. A total of 16 genes contained introns, including 10 PCGs and 6 tRNA genes; the ycf3 and clpP genes contained two introns, and the remaining genes each contained one. Compared to the cp genomes of 21 other Brassicaceae species, the cp genome of Alyssum desertorum was the smallest, as due to variation in gene content and gene length, such as a lack of the rps16 gene and the deletion of some coding genes. Additionally, deletions of introns and intergenic spacers were observed, but their total length was not significantly shorter than those of other taxa. Phylogenetic analysis at the tribal level based on a cp genome dataset revealed that the tribe Alysseae is an early‐diverging lineage that is sister to other species within subclade B of clade II.  相似文献   

11.
Liu  Fenxiang  Movahedi  Ali  Yang  Wenguo  Xu  Lei  Xie  Jigang  Zhang  Yu 《Molecular biology reports》2020,47(7):5013-5024

Callistemon rigidus R.Br. one of the traditional Chinese medicinal plants, is acrid-flavored and mild-natured, with the prominent effects reducing swelling, resolving phlegm, and dispelling rheumatism. Clinically, it has been commonly used to treat cold, cough and asthma, pain and swelling from impact injuries, eczema, rheumatic arthralgia. The chloroplast genome study on Callistemon rigidus R.Br. is a few seen. This study demonstrates the data collected from the assembly and annotation of the chloroplast (cp) genome of Callistemon rigidus R.Br., followed by furthers comparative analysis with the cp genomes of closely related species. C. rigidus R.Br. showed a cp genome in the size of 158, 961 bp long with 36.78% GC content, among which a pair of inverted repeats (IRs) of 26, 671 bp separated a large single-copy (LSC) region of 87, 162 bp and a small single-copy (SSC) region of 18, 457 bp. Altogether 131 genes were hosted, including 37 transfer RNAs, 8 ribosomal RNAs, and 86 protein-coding genes. 284 simple sequence repeats (SSRs) were also marked out. A comparative analysis of the genome structure and the sequence data of closely related species unveiled the conserved gene order in the IR and LSC/SSC regions, a quite constructive finding for future phylogenetic research. Overall, this study providing C. rigidus R.Br. genomic resources could positively contribute to the evolutionary study and the phylogenetic reconstruction of Myrtaceae.

  相似文献   

12.
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.  相似文献   

13.
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.  相似文献   

14.
DNA sequence organization patterns have been studied in fourCucurbitaceae plant species, namely,Luffa cylindrica (sponge gourd),L. acutangula (ridge gourd),Benincasa hispida (ash gourd) andCoccinia indica (ivy gourd). Extensive interspersion of repeat and single copy sequences has been observed in sponge gourd and ridge gourd. In ash gourd and ivy gourd, however, there is a limited interspersion of these sequences and a large portion of the single copy DNA remains uninterspersed. The interspersed repetitive sequences are composed of a major class (75–80%) of short repeats (300 base pairs long) and a minor class (15–20%) of long repeats (2 000–4 000 base pairs) in all the four species. The average length of single copy sequences dispersed among repeats is 1 800–2 900 base pairs. In spite of these gross similarities in the genome organization in the four species, the fraction of repeats and single copy sequences involved in short and long period interspersion patterns, and fraction of single copy sequences remaining uninterrupted by repeats are vastly different. The probable implications of these differences with respect to speciation events and rates of genome evolution are discussed.Molecular Analysis ofCucurbitaceae Genomes, III. — NCL Communication No.: 3595.  相似文献   

15.
Continuous exploratory use of tree species is threatening the existence of several plants in South America. One of these threatened species is Myracroduron urundeuva, highly exploited due to the high quality and durability of its wood. The chloroplast (cp) has been used for several evolutionary studies as well traceability of timber origin, based on its gene sequences and simple sequence repeats (SSR) variability. Cp genome organization is usually consisting of a large single copy and a small single copy region separated by two inverted repeats regions. We sequenced the complete cp genome from M. urundeuva based on Illumina next-generation sequencing. Our results show that the cp genome is 159,883 bp in size. The 36 SSR identified ranging from mono- to hexanucleotides. Positive selection analysis revealed nine genes related to photosystem, protein synthesis, and DNA replication, and protease are under positive selection. Genome comparison a other Anacardiaceae chloroplast genomes showed great variability in the family. The phylogenetic analysis using complete chloroplast genome sequences of other Anacardiaceae family members showed a close relationship with two other economically important genera, Pistacia and Rhus. These results will help future investigations of timber monitoring and population and evolutionary studies. Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00989-1.  相似文献   

16.
沙冬青属植物叶绿体基因组对比和系统发育分析   总被引:1,自引:0,他引:1  
段义忠  张凯 《西北植物学报》2020,40(8):1323-1332
该研究以沙冬青和矮沙冬青叶绿体基因组为研究对象,比较分析其基因组结构和系统发育关系。结果显示: (1)沙冬青和矮沙冬青的叶绿体基因组具有典型的四段式结构,全长为153 935 bp和154 140 bp,其中大单拷贝区(LSC)分别为83 891 bp和84 126 bp,小单拷贝区(SSC)分别为18 022 bp和18 014 bp,以及长度各自为26 011 bp和26 000 bp的成对反向重复区(IRs);沙冬青和矮沙冬青均注释130个基因,包括85个蛋白编码基因(PCGs),37个转运RNA(tRNA)以及8个核糖体RNA(rRNA)。(2)沙冬青和矮沙冬青的叶绿体基因组中分别检测出26和15个回文重复序列,39和50个串联重复序列,23和34个散在重复序列。同时都鉴定出96个SSRs位点,包括74和73个单核苷酸重复,5和6个二核苷酸重复,以及各有17个复合SSR位点;边界分析显示两者IR区相似,但仍有一定差异。(3)通过近邻结合法(NJ)对沙冬青和矮沙冬青在内的17种蝶形花亚科以及2种云实亚科植物的叶绿体基因组构建的系统发育树显示,沙冬青和矮沙冬青以较高的支持率聚为一个独立分枝。该研究结果为沙冬青属的种间鉴别、SSR分子标记开发、保育工作、种群动态以及进一步研究坡塔里族的演化过程奠定了理论基础。  相似文献   

17.
We first report the complete chloroplast (cp) genome of Fritillaria taipaiensis and determine its characteristics, sequence divergence and phylogenetic relationships by comparing it with complete cp genomes of Liliaceae s.l. (including e.g. Nartheciaceae, Amaryllidaceae and Asparagaceae) species obtained from NCBI Genbank. We show that the ycf1, ycf15 and infA genes have become pseudogenes or are lost in some of the seventeen Liliaceae species, and that dispersed repeats are prevailing among the four types of repeats (dispersed, palindromic, complement and tandem repeats). The number of simple sequence repeats ranged from 53 to 84 in the seventeen species, with mononucleotide repeats being the most abundant, followed by dinucleotides. A total of nine genes with positive selection sites were identified (atpB, atpE, ndhF, ndhH, petB, rpl2, rpl20, rpl22 and ycf2). Furthermore, we examined 19 mutational hotspot regions, including three coding regions (rps16, infA and rpl22) and sixteen non-coding regions. A phylogenetic analysis of the complete cp genomes and protein-coding sequences showed that Fritillaria is most closely related to Lilium. Moreover, Asparagus and Polygonatum, Hosta and Yucca are closely related to the Liliaceae. These results will contribute to further study of evolutionary patterns and phylogenetic relationships in Liliaceae s.l.  相似文献   

18.
Chung HJ  Jung JD  Park HW  Kim JH  Cha HW  Min SR  Jeong WJ  Liu JR 《Plant cell reports》2006,25(12):1369-1379
The complete nucleotide sequence of the chloroplast genome of potato Solanum tuberosum L. cv. Desiree was determined. The circular double-stranded DNA, which consists of 155,312 bp, contains a pair of inverted repeat regions (IRa, IRb) of 25,595 bp each. The inverted repeat regions are separated by small and large single copy regions of 18,373 and 85,749 bp, respectively. The genome contains 79 proteins, 30 tRNAs, 4 rRNAs, and unidentified genes. A comparison of chloroplast genomes of seven Solanaceae species revealed that the gene content and their relative positions of S. tuberosum are similar to the other six Solanaceae species. However, undefined open reading frames (ORFs) in LSC region were highly diverged in Solanaceae species except N. sylvestris. Detailed comparison was identified by numerous indels in the intergenic regions that were mostly located in the LSC region. Among them, a single large 241-bp deletion, was not associated with direct repeats and found in only S. tuberosum, clearly discriminates a cultivated potato from wild potato species Solanum bulbocastanum. The extent of sequence divergence may provide the basis for evaluating genetic diversity within the Solanaceae species, and will be useful to examine the evolutionary processes in potato landraces.  相似文献   

19.
为探究地果(Ficus tikoua)的遗传变异特征,利用Illumina HiSeq-2500平台获取地果的基因表达谱。结果表明,共获得了197 362个转录本,总长度和平均长度分别为114 072 125和577 bp。使用BlastX和BlastN共注释了139 992个转录本(占总数的70.93%)。从3个品种叶片和茎的6对样品中,分别鉴定了12 397、12 340、10 373、94 431、71 830和44 465个差异表达基因,以及注释了126、129、125、134、138和137条代谢途径。这将有助于理解地果的遗传特征,以及不同组织中代谢途径的变化。  相似文献   

20.

Silene latifolia is an herbaceous plant with great invasive potential. Spread along trade routes from Europe to almost all continents, white campion became particularly widespread in North America. We sequenced the chloroplast genome of S. latifolia subsp. alba from a native range in southeast Fennoscandia. The chloroplast genome of native S. latifolia subsp. alba forms a 151,747-bp circle, has two inverted repeat regions (25,993 bp each), large single copy (82,708 bp), and small single copy (17,106 bp) regions. It contains 77 protein-coding genes, 30 tRNA genes, and four rRNA genes. SSRs and long DNA repeats were identified. Comparison of a newly sequenced plastome of S. latifolia subsp. alba with plastomes of invasive specimens of species from North America and Japan revealed a high level of single nucleotide polymorphisms (SNPs) among them. A total of 214 SNPs were found, among which 110 were identified in intergenic spacers, 74 in exons, and 30 in introns. Intraspecific shifts in inverted repeat boundaries were identified. Our research suggests that high polymorphic regions may be potential molecular markers for population studies and that high intraspecific genetic polymorphism may contribute to a species’ invasive success.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号