首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of Pasteuria penetrans for suppressing Meloidogyne arenaria race 1 on peanut (Arachis hypogaea) was tested over a 2-year period in a field microplot experiment. Endospores of P. penetrans were mass-produced on M. arenaria race 1 infecting tomato plants. Endospores were inoculated in the first year only at rates of 0, 1,000, 3,000, 10,000, and 100,000 endospores/g of soil, respectively, into the top 20 cm of microplots that were previously infested with M. arenaria race 1. One peanut seedling was planted in each microplot. In the first year, root gall indices and pod galls per microplot were significantly reduced by 60% and 95% for 100,000 endospores/g of soil, and 20% and 65% for 10,000 endospores/g of soil, respectively. Final densities of second-stage juveniles (J2) in soil were not significantly different among the treatments. The number of endospores attached to J2 and percentage of J2 with attached endospores significantly increased with increasing endospore inoculation levels. Pasteuria penetrans significantly reduced the densities of J2 that overwintered. In the second year, root and pod gall indices, respectively, were significantly reduced by 81% and 90% for 100,000 endospores/g of soil, and by 61% and 82% of 10,000 endospores/g of soil. Pod yields were significantly increased by 94% for 100,000 and by 57% for 10,000 endospores/g of soil, respectively. The effect of P. penetrans on final densities of J2 in soil was not significant. Regression analyses verified the role of P. penetrans in the suppression of M. arenaria. The minimum number of endospores required for significantly suppressing M. arenaria race 1 on peanut was 10,000 endospores/g of soil.  相似文献   

2.
Endospores of Pasteuria penetrans were evaluated for their vertical distribution in field soil and their downward movement through soil in the laboratory. In the field trial, the number of endospores attached to second-stage juveniles (J2) of Meloidogyne arenaria race 1 varied greatly in different soil depths. There were higher percentages of J2 with endospores attached in former weed fallow plots during the first 3 years of growing peanut than in former bahiagrass and rhizomal peanut plots (P ≤ 0.05). In weed fallow plots a higher average number of endospores per J2 were maintained in all depths, upper three depths, and upper four depths in 1999, 2000, and 2001, respectively (P ≤ 0.05). However, in 2002, there were no differences in the percentages of J2 with endospores attached and in the average of the numbers of endospores per J2 among the treatments (P > 0.05). In laboratory trials, P. penetrans endospores were observed to move throughout the soil through the percolation of water. After one application of water, some endospores were detected 25 to 37.5 cm deep. Endospores were present at the greatest depth, 37.5 to 50 cm, after the third application of water. These results indicate that rain or water applications by irrigation are likely to move endospores to deeper levels of the soil, but the majority of endospores remain in the upper 0-to-30-cm depth.  相似文献   

3.
The biological control of Meloidogyne arenaria on peanut (Arachis hypogaea) by Pasteuria penetrans was evaluated using a six x six factorial experiment in field microplots over 2 years. The main factors were six inoculum levels of second-stage juveniles (J2) of M. arenaria race 1 (0, 40, 200, 1,000, 5,000, and 25,000 J2/microplot, except that the highest level was 20,000 J2/microplot in 1995) and six infestation levels of P. penetrans as percentages of J2 with endospores attached (0, 20, 40, 60, 80, and 100%). The results were similar in 1994 and 1995. Numbers of eggs per root system, J2 per 100 cm³ soil at harvest, root galls, and pod galls increased with increasing nematode inoculum levels and decreased with increasing P. penetrans infestation levels (P ≤ 0.05), except that there was no effect of P. penetrans infestation levels on J2 per 100 cm³ soil in 1994 (P> 0.05). There were no statistical interaction effects between the inoculum levels of J2 and the infestation levels of P. penetrans (P > 0.05). When the infestation level was increased by 10%, the number of eggs per root system, root galls, and pod galls decreased 7.8% to 9.4%, 7.0% to 8.5%, and 8.0% to 8.7% in 1994 and 1995, respectively, whereas J2 per 100 cm³ soil decreased 8.8% in 1995 (P ≤ 0.05). The initial infestation level of P. penetrans contributed 81% to 95% of the total suppression of pod galls, whereas the infection of J2 of the subsequent generations contributed only 5% to 19% suppression of pod galls. The major suppressive mechanism of M. arenaria race 1 by P. penetrans on peanut is the initial endospore infestation of J2 at planting.  相似文献   

4.
The long-term persistence and suppressiveness of Pasteuria penetrans against Meloidogyne arenaria race 1 were investigated in a formerly root-knot nematode suppressive site following 9 years of continuous cultivation of three treatments and 4 years of continuous peanut. The three treatments were two M. arenaria race 1 nonhost crops, bahiagrass (Paspalum notatum cv. Pensacola var. Tifton 9), rhizomal peanut (Arachis glabrata cv. Florigraze), and weed fallow. Two root-knot nematode susceptible weeds commonly observed in weed fallow plots were hairy indigo (Indigofera hirsuta) and alyce clover (Alysicarpus vaginalis). The percentage of J2 with endospores attached reached the highest level of 87% in 2000 in weed fallow, and 63% and 53% in 2002 in bahiagrass and rhizomal peanut, respectively. The percentage of endospore-filled females extracted from peanut roots grown in weed fallow plots increased from nondetectable in 1999 to 56% in 2002, whereas the percentages in bahiagrass and rhizomal peanut plots were 41% and 16%, respectively. Over 4 years, however, there was no strong evidence that endospores densities reached suppressive levels because peanut roots, pods, and pegs were heavily galled, and yields were suppressed. This might be attributed to the discovery of M. javanica infecting peanut in this field in early autumn 2001. A laboratory test confirmed that although the P. penetrans isolate specific to M. arenaria attached to M. javanica J2, no development occurred. In summary, P. penetrans increased on M. arenaria over a 4-year period, but apparently because of infection of M. javanica on peanut at the field site root-knot disease was not suppressed. This was confirmed by a suppressive soil test that showed a higher level of soil suppressiveness than occurred in the field (P ≤ 0.01).  相似文献   

5.
The root-knot nematode Meloidogyne incognita was controlled more effectively and yields of host plants were greater when Paecilomyces lilacinus and Pasteuria penetrans were applied together in field microplots than when either was applied alone. Yields of winter vetch from microplots inoculated with the nematode and with both organisms were not statistically different from yields from uninoculated control plots.  相似文献   

6.
Pasteuria penetrans spore adhesion to Meloidogyne javanica second-stage juveniles (J2) was examined following several different pretreatments of the latter. The detergents sodium dodecyl sulfate and Triton X-100, the carbohydrates fucose and α-methyl-D-mannoside, and the lectins concanavalin A and wheat germ agglutinin reduced spore attachment. Spores exposed to M. javanica surface coat (SC) extract exhibited decreased adherence to the J2 surface. Second-stage juveniles that had been treated with antibodies recognizing a 250-kDa antigen of J2 SC extract had fewer spores attached to their surfaces, as compared to nontreated J2, except in the head region. This inhibition pattern was similar to that of antibody-labelling on M. javanica J2 as observed by electron microscopy. It is suggested that several SC components, such as carbohydrate residues, carbohydrate-recognition domains, and a 250-kDa antigen, are involved in P. penetrans spore attachment to the surface of M. javanica.  相似文献   

7.
We have developed a simple PCR assay protocol for detection of the root-knot nematode (RKN) species Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Nematodes are extracted from soil using Baermann funnels and centrifugal flotation. The nematode-containing fraction is then digested with proteinase K, and a PCR assay is carried out with primers specific for this group of RKN and with universal primers spanning the ITS of rRNA genes. The presence of RKN J2 can be detected among large numbers of other plant-parasitic and free-living nematodes. The procedure was tested with several soil types and crops from different locations and was found to be sensitive and accurate. Analysis of unknowns and spiked soil samples indicated that detection sensitivity was the same as or higher than by microscopic examination.  相似文献   

8.
The bacteria Pasteuria spp. have been identified as among the most promising of several microbial organisms currently under investigation as biological control agents of plant-parasitic nematodes. As part of our goal to develop methods to discriminate isolates of Pasteuria penetrans with different host preferences, we investigated the potential of developing antibody probes to identify endospores of different isolates of P. penetrans. Polyclonal IgY antibodies were raised in chickens against endospores of P. penetrans isolates P20 and P100. Hens were injected with P20 or P100 endospore suspensions and boosted at 14 days. Anti-spore titers were determined with ELISA on yolk extracts of individual eggs as a function of time. The highest titers were found in eggs produced at 22 to 35 days after initial injections. Yolk extracts showing the highest titers were combined and processed to provide partially purified IgY preparations. SDS-PAGE and immunoblot analyses identified protein antigens with Mr values of 23-24, 46, and 57-59 KDa common to both P20 and P100 endospores. One protein antigen with an Mr value of 62 KDa was unique to the PI00 endospores. The IgY antibodies reduced the attachment of Pasteuria endospores to their nematode hosts, indicating antibody interaction with antigens on the endospore surface that are involved in the recognition and attachment processes.  相似文献   

9.
Greenhouse and growth room experiments were conducted to investigate the effect of host plant in relation to different nematode inoculum levels, and temperature fluctuations on the development of Pasteuria penetrans. Host plant affected the development of P. penetrans indirectly through its effect on nematode development. Endospores collected from Meloidogyne javanica females reared on different hosts did not show any differences in subsequent attachment and infectivity. The numbers of endospores produced per infected female were reduced with increasing numbers of females parasitizing okra and tomato roots. Fluctuating temperatures retarded the development of P. penetrans. The life cycle of the parasite was completed faster at approximately constant temperatures close to 30 °C than when the temperature fluctuated away from 30 °C. The temperature of irrigation water did not affect the duration of life cycle of P. penetrans.  相似文献   

10.
Pasteuria penetrans is a promising biological control agent of plant-parasitic nematodes. This study was conducted to determine effects of temperature on the bacterium''s development in Meloidogyne arenaria. Developmental stages of P. penetrans were viewed with a compound microscope and verified with scanning electron microscopy within each nematode at 100 accumulated degree-day intervals by tracking accumulated degree-days at three temperatures (21, 28, and 35 °C). Five predominant developmental stages of P. penetrans were identified with light microscopy: endospore germination, vegetative growth, differentiation, sporulation, and maturation. Mature endospores were detected at 28, 35, and >90 calendar days at 35, 28, and 21 °C, respectively. The number of accumulated degree-days required for P. penetrans to reach a specific developmental stage was different for each temperature. Differences were observed in the development of P. penetrans at 21, 28, and 35 °C based on regression values fitted for data from 100 to 600 accumulated degree-days. A linear response was observed between 100 to 600 accumulated degree-days; however, after 600 accumulated degree-days the rate of development of P. penetrans leveled off at 21 and 28 °C, whereas at 35 °C the rate decreased. Results suggest that accumulated degree-days may be useful only in predicting early-developmental stages of P. penetrans.  相似文献   

11.
Pasteuria penetrans is a gram positive bacterium that prevents Meloidogyne spp. from reproducing and diminishes their ability to penetrate roots. The attachment of the endospores to the cuticle of the nematodes is the first step in the life cycle of the bacterium and is essential for its reproduction. As a preliminary study to a field solarization test, the effects of temperature on the attachment of P. penetrans on Meloidogyne arenaria race 1 were investigated. Preexposing second-stage juveniles (J2) of M. arenaria to approximately 30 °C in water before exposing them to endospores increased their receptivity to endospore attachment when compared to treating J2 at 25 °C or 35 °C. In tests with soil, highest attachment occurred when J2 were incubated in soil infested with endospores and maintained at 20 °C to 30 °C for 4 days. Heating J2 in soil to sublethal temperatures (35 °C to 40 °C) decreased endospore attachment. Incubating P. penetrans endospores in soil at 30 °C to 70 °C for 5 hours a day over 10 days resulted in reductions of endospore attachment to nematodes as temperatures of incubation increased to 50 °C and higher.  相似文献   

12.
Yield-loss models were developed for tobacco infected with Meloidogyne incognita grown in microplots under various irrigation regimes. The rate of relative yield loss per initial nematode density (Pi), where relative yield is a proportion of the value of the harvested leaves in uninfected plants with the same irrigation treatment, was greater under conditions of water stress or with high irrigation than at an intermediate level of soil moisture. The maximum rate of plant growth per degree-day (base 10 C) was reduced as nematode Pi increased when plots contained adequate water. When plants were under water stress, increasing Pi did not luther reduce the maximum rate of plant growth (water stress was the limiting factor). Cumulative soil matric potential values were calculated to describe the relationship between available water in the soil (matric potential) due to the irrigation treatments and subsequent plant growth.  相似文献   

13.
A microplot study on the influence of cropping sequences with peanut in summer and bare fallowed or cover crops of rye or vetch in winter on the population development of Pasteuria penetrans was initiated in the spring of 1987. The number of spores of P. penetrans attached per second-stage juvenile of Meloidogyne arenaria race 1 increased from 0.11 in the fall of 1987 to 7.6, 8.6, and 3.6 in the fall of 1989 in the rye, vetch, and fallowed plots, respectively. Higher (P ≤ 0.05) levels of P. penetrans occurred in the rye and vetch plots than in fallowed plots. No influence of P. penetrans on peanut, rye, or vetch yield was observed in 1987 and 1988, but in 1989 peanut yield was 64% higher (P ≤ 0.05) in plots infested with P. penetrans than in plots without P. penetrans. Numbers of M. arenaria in plots without P. penetrans were influenced by the cropping sequences in the spring of 1988 and 1989 but not in the fall following the peanut crop. In the spring the plots with rye had the lowest nematode numbers in either year (P ≤ 0.05). Nematode numbers were lower (P ≤ 0.05) in plots with P. penetrans than in plots without P. penetrans in the spring of 1989 (vetch) and the fall of 1989 (rye, vetch, and fallowed).  相似文献   

14.
Guardian peach rootstock was evaluated for susceptibility to Meloidogyne incognita race 3 (Georgia-peach isolate) and M. javanica in the greenhouse. Both commercial Guardian seed sources produced plants that were poor hosts of M. incognita and M. javanica. Reproduction as measured by number of egg masses and eggs per plant, eggs per egg mass, and eggs per gram of root were a better measure of host resistance than number of root galls per plant. Penetration, development, and reproduction of M. incognita in Guardian (resistant) and Lovell (susceptible) peach were also studied in the greenhouse. Differences in susceptibility were not attributed to differential penetration by the infectivestage juveniles (J2) or the number of root galls per plant. Results indicated that M. incognita J2 penetrated Guardian roots and formed galls, but that the majority of the nematodes failed to mature and reproduce.  相似文献   

15.
The incidence of adhesion of Pasteuria penetrans endospores to Meloidogyne incognita second-stage juveniles (J2) was studied after pretreatment of the latter with monoclonal antibodies (MAb), cationized ferritin, and other organic molecules in replicated trials. Monoclonal antibodies developed to a cuticular epitope of M. incognita second-stage juveniles gave significant reductions in attachment of P. penetrans endospores to treated nematodes. MAb bound to the entire length of J2 except for the area of the lateral field, where binding was restricted to the incisures. Since reductions in attachment with MAb treatment were modest, it is uncertain if these results implicated a specific surface protein as a factor that interacted in binding of the endospore to the nematode cuticle. Endospore attachment was decreased following treatment of the nematode with the detergents sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). Endospore attachment to live nematodes was significantly greater than attachment to dead nematodes. Attachment rates of three P. penetrans isolates to M. incognita race 3 varied between isolates. The effects of neuraminidase, pronase, pepsin, trypsin, lipase, and Na periodate on endospore attachment were inconsistent. The cationic dye alcian blue, which binds sulfate and carboxyl groups on acidic glycans, had no consistent effect on endospore attachment. The incidence of endospore attachment was significantly lower but modest, at best, for nematodes that were treated with cationized ferritin alone or cationized ferritin following monoclonal antibody. The lack of consistency or extreme reduction in most experiments suggests that attachment of P. penetrans spores to M. incognita is not specified by only one physico-chemical factor, but may involve a combination of at least two physico-chemical factors (including surface charge and movement of the J2). This points to a need for analysis of combined or factorial treatment effects.  相似文献   

16.
The effect of temperature (10, 20, 25, 30, and 35 C) on attachment and development of Pasteuria penetrans on Meloidogyne arenaria race 1 was elevated in growth chambers. The greatest attachment rate of endospores of P. penetrans occurred on second-stage juveniles at 30 C. The bacterium developed more quickly within its host at 30 and 35 C than at 25 C or below. The development of the bacterium within the nematode female was divided into nine recognizable life stages, which ranged from early vegetative thalli to mature sporangia. Mature sporangium was the predominant life stage observed after 35, 40, 81, and 116 days at 35, 30, 25, and 20 C, respectively. The body width and length of M. arenaria females infected with P. penetrans were smaller initially than the same dimensions in uninfected females, but became considerably larger over time at 25, 30, and 35 C. This isolate of P. penetrans also parasitized and completed its life cycle in males of M. arenaria.  相似文献   

17.
Six methods for quantification of the endospore concentrations of Pasteuria penetrans from tomato roots are described. Mortar disruption and machine disruption methods gave the highest estimations (endospores per gram of root material) of 83.7 and 79.0 million, respectively. These methods were significantly superior to incubation bioassay (47.7 million), enzymatic disruption (32.1 million), and enzymatic disruption + flotation (25.8 million) methods. A centrifugation bioassay method gave the lowest estimation of 12.7 million.  相似文献   

18.
Greenhouse lysimeter and field microplot tests were conducted to evaluate the effects of Meloidogyne incognita and M. javanica on plant water relations and growth performance of NC 2326 flue-cured tobacco. In the greenhouse, afternoon leaf water potential values at 8-11 weeks after transplanting were lower by as much as 0.22 MPa in plants infected with either nematode than in the control plants. From 11 to 22 weeks, leaf water potential values were similar in all treatments. Over the course of the 22-week experiment, all infected plants showed similar evapotranspiration patterns, and plants in these treatments used 87-88% of the water utilized by noninfected plants. Biomass production from nematode-infected plants, however, was only about 50% of the biomass of control plants. The field microplot study showed water use patterns similar to those in the lysimeter study.  相似文献   

19.
Resistance of pepper species (Capsicum annuum, C. baccatum, C. chinense, C. chacoense, and C. frutescens), cultivars and accessions to the root-knot nematodes Meloidogyne incognita race 2 and M. javanica, and their graft compatibility with commercial pepper varieties as rootstocks were evaluated in growth chamber and greenhouse experiments. Most of the plants tested were highly resistant to M. javanica but susceptible to M. incognita. Capsicum annuum AR-96023 and C. frutescens accessions as rootstocks showed moderate and relatively high resistance to M. incognita, respectively. In M. incognita-infested soil in a greenhouse, AR-96023 supported approximately 6-fold less nematode eggs per gram root and produced about 2-fold greater yield compared to a nongrafted commercial variety. The commercial variety grafted on AR-96023 produced a yield as great as the non-grafted variety in the root-knot nematode-free greenhouse. Some resistant varieties and accessions used as rootstocks produced lower yields (P < 0.01) than that of the non-grafted variety in the noninfested greenhouse. Use of rootstocks with nematode-resistance and graft compatibility may be effective for control of root-knot nematodes on susceptible pepper.  相似文献   

20.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号