首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological control of Meloidogyne arenaria on peanut (Arachis hypogaea) by Pasteuria penetrans was evaluated using a six x six factorial experiment in field microplots over 2 years. The main factors were six inoculum levels of second-stage juveniles (J2) of M. arenaria race 1 (0, 40, 200, 1,000, 5,000, and 25,000 J2/microplot, except that the highest level was 20,000 J2/microplot in 1995) and six infestation levels of P. penetrans as percentages of J2 with endospores attached (0, 20, 40, 60, 80, and 100%). The results were similar in 1994 and 1995. Numbers of eggs per root system, J2 per 100 cm³ soil at harvest, root galls, and pod galls increased with increasing nematode inoculum levels and decreased with increasing P. penetrans infestation levels (P ≤ 0.05), except that there was no effect of P. penetrans infestation levels on J2 per 100 cm³ soil in 1994 (P> 0.05). There were no statistical interaction effects between the inoculum levels of J2 and the infestation levels of P. penetrans (P > 0.05). When the infestation level was increased by 10%, the number of eggs per root system, root galls, and pod galls decreased 7.8% to 9.4%, 7.0% to 8.5%, and 8.0% to 8.7% in 1994 and 1995, respectively, whereas J2 per 100 cm³ soil decreased 8.8% in 1995 (P ≤ 0.05). The initial infestation level of P. penetrans contributed 81% to 95% of the total suppression of pod galls, whereas the infection of J2 of the subsequent generations contributed only 5% to 19% suppression of pod galls. The major suppressive mechanism of M. arenaria race 1 by P. penetrans on peanut is the initial endospore infestation of J2 at planting.  相似文献   

2.
Pasteuria penetrans is a gram positive bacterium that prevents Meloidogyne spp. from reproducing and diminishes their ability to penetrate roots. The attachment of the endospores to the cuticle of the nematodes is the first step in the life cycle of the bacterium and is essential for its reproduction. As a preliminary study to a field solarization test, the effects of temperature on the attachment of P. penetrans on Meloidogyne arenaria race 1 were investigated. Preexposing second-stage juveniles (J2) of M. arenaria to approximately 30 °C in water before exposing them to endospores increased their receptivity to endospore attachment when compared to treating J2 at 25 °C or 35 °C. In tests with soil, highest attachment occurred when J2 were incubated in soil infested with endospores and maintained at 20 °C to 30 °C for 4 days. Heating J2 in soil to sublethal temperatures (35 °C to 40 °C) decreased endospore attachment. Incubating P. penetrans endospores in soil at 30 °C to 70 °C for 5 hours a day over 10 days resulted in reductions of endospore attachment to nematodes as temperatures of incubation increased to 50 °C and higher.  相似文献   

3.
The long-term persistence and suppressiveness of Pasteuria penetrans against Meloidogyne arenaria race 1 were investigated in a formerly root-knot nematode suppressive site following 9 years of continuous cultivation of three treatments and 4 years of continuous peanut. The three treatments were two M. arenaria race 1 nonhost crops, bahiagrass (Paspalum notatum cv. Pensacola var. Tifton 9), rhizomal peanut (Arachis glabrata cv. Florigraze), and weed fallow. Two root-knot nematode susceptible weeds commonly observed in weed fallow plots were hairy indigo (Indigofera hirsuta) and alyce clover (Alysicarpus vaginalis). The percentage of J2 with endospores attached reached the highest level of 87% in 2000 in weed fallow, and 63% and 53% in 2002 in bahiagrass and rhizomal peanut, respectively. The percentage of endospore-filled females extracted from peanut roots grown in weed fallow plots increased from nondetectable in 1999 to 56% in 2002, whereas the percentages in bahiagrass and rhizomal peanut plots were 41% and 16%, respectively. Over 4 years, however, there was no strong evidence that endospores densities reached suppressive levels because peanut roots, pods, and pegs were heavily galled, and yields were suppressed. This might be attributed to the discovery of M. javanica infecting peanut in this field in early autumn 2001. A laboratory test confirmed that although the P. penetrans isolate specific to M. arenaria attached to M. javanica J2, no development occurred. In summary, P. penetrans increased on M. arenaria over a 4-year period, but apparently because of infection of M. javanica on peanut at the field site root-knot disease was not suppressed. This was confirmed by a suppressive soil test that showed a higher level of soil suppressiveness than occurred in the field (P ≤ 0.01).  相似文献   

4.
A microplot study on the influence of cropping sequences with peanut in summer and bare fallowed or cover crops of rye or vetch in winter on the population development of Pasteuria penetrans was initiated in the spring of 1987. The number of spores of P. penetrans attached per second-stage juvenile of Meloidogyne arenaria race 1 increased from 0.11 in the fall of 1987 to 7.6, 8.6, and 3.6 in the fall of 1989 in the rye, vetch, and fallowed plots, respectively. Higher (P ≤ 0.05) levels of P. penetrans occurred in the rye and vetch plots than in fallowed plots. No influence of P. penetrans on peanut, rye, or vetch yield was observed in 1987 and 1988, but in 1989 peanut yield was 64% higher (P ≤ 0.05) in plots infested with P. penetrans than in plots without P. penetrans. Numbers of M. arenaria in plots without P. penetrans were influenced by the cropping sequences in the spring of 1988 and 1989 but not in the fall following the peanut crop. In the spring the plots with rye had the lowest nematode numbers in either year (P ≤ 0.05). Nematode numbers were lower (P ≤ 0.05) in plots with P. penetrans than in plots without P. penetrans in the spring of 1989 (vetch) and the fall of 1989 (rye, vetch, and fallowed).  相似文献   

5.
Pasteuria penetrans is a promising biological control agent of plant-parasitic nematodes. This study was conducted to determine effects of temperature on the bacterium''s development in Meloidogyne arenaria. Developmental stages of P. penetrans were viewed with a compound microscope and verified with scanning electron microscopy within each nematode at 100 accumulated degree-day intervals by tracking accumulated degree-days at three temperatures (21, 28, and 35 °C). Five predominant developmental stages of P. penetrans were identified with light microscopy: endospore germination, vegetative growth, differentiation, sporulation, and maturation. Mature endospores were detected at 28, 35, and >90 calendar days at 35, 28, and 21 °C, respectively. The number of accumulated degree-days required for P. penetrans to reach a specific developmental stage was different for each temperature. Differences were observed in the development of P. penetrans at 21, 28, and 35 °C based on regression values fitted for data from 100 to 600 accumulated degree-days. A linear response was observed between 100 to 600 accumulated degree-days; however, after 600 accumulated degree-days the rate of development of P. penetrans leveled off at 21 and 28 °C, whereas at 35 °C the rate decreased. Results suggest that accumulated degree-days may be useful only in predicting early-developmental stages of P. penetrans.  相似文献   

6.
The role of Pasteuria penetrans in suppressing numbers of root-knot nematodes was investigated in a 7-year monocuhure of tobacco in a field naturally infested with a mixed population of Meloidogyne incognita race 1 and M. javanica. The suppressiveness of the soil was tested using four treatments: autoclaving (AC), microwaving (MW), air drying (DR), and untreated. The treated soil bioassays consisted of tobacco cv. Northrup King 326 (resistant to M. incognita but susceptible to M. javanica) and cv. Coker 371 Gold (susceptible to M. incognita and M. javanica) in pots inoculated with 0 or 2,000 second-stage juveniles of M. incognita race 1. Endospores of P. penetrans were killed by AC but were only slightly affected by MW, whereas most fungal propagules were destroyed or inhibited in both treatments. Root galls, egg masses, and numbers of eggs were fewer on Coker 371 Gold in MW, DR, and untreated soil than in AC-treated soil. There were fewer egg masses than root galls on both tobacco cultivars in MW, DR, and untreated soil than in the AC treatment. Because both Meloidogyne spp. were suppressed in MW soil (with few fungi present) as well as in DR and untreated soil, the reduction in root galling, as well as numbers of egg masses and eggs appeared to have resulted from infection of both nematode species by P. penetrans.  相似文献   

7.
Six methods for quantification of the endospore concentrations of Pasteuria penetrans from tomato roots are described. Mortar disruption and machine disruption methods gave the highest estimations (endospores per gram of root material) of 83.7 and 79.0 million, respectively. These methods were significantly superior to incubation bioassay (47.7 million), enzymatic disruption (32.1 million), and enzymatic disruption + flotation (25.8 million) methods. A centrifugation bioassay method gave the lowest estimation of 12.7 million.  相似文献   

8.
Endospores of Pasteuria penetrans were evaluated for their vertical distribution in field soil and their downward movement through soil in the laboratory. In the field trial, the number of endospores attached to second-stage juveniles (J2) of Meloidogyne arenaria race 1 varied greatly in different soil depths. There were higher percentages of J2 with endospores attached in former weed fallow plots during the first 3 years of growing peanut than in former bahiagrass and rhizomal peanut plots (P ≤ 0.05). In weed fallow plots a higher average number of endospores per J2 were maintained in all depths, upper three depths, and upper four depths in 1999, 2000, and 2001, respectively (P ≤ 0.05). However, in 2002, there were no differences in the percentages of J2 with endospores attached and in the average of the numbers of endospores per J2 among the treatments (P > 0.05). In laboratory trials, P. penetrans endospores were observed to move throughout the soil through the percolation of water. After one application of water, some endospores were detected 25 to 37.5 cm deep. Endospores were present at the greatest depth, 37.5 to 50 cm, after the third application of water. These results indicate that rain or water applications by irrigation are likely to move endospores to deeper levels of the soil, but the majority of endospores remain in the upper 0-to-30-cm depth.  相似文献   

9.
The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities increased under intensive cropping of hosts for M. arenaria, but the GH population of the nematode was not receptive to spore attachment. However, previously, the GH population was very receptive to spore acquisition from this field site. One explanation for this inconsistency is that the M. arenaria population in the field became resistant to the dominant subpopulation of P. penetrans that had been present, and this led to the selection of a different subpopulation of the bacterium that is incompatible with the GH population.  相似文献   

10.
The bacteria Pasteuria spp. have been identified as among the most promising of several microbial organisms currently under investigation as biological control agents of plant-parasitic nematodes. As part of our goal to develop methods to discriminate isolates of Pasteuria penetrans with different host preferences, we investigated the potential of developing antibody probes to identify endospores of different isolates of P. penetrans. Polyclonal IgY antibodies were raised in chickens against endospores of P. penetrans isolates P20 and P100. Hens were injected with P20 or P100 endospore suspensions and boosted at 14 days. Anti-spore titers were determined with ELISA on yolk extracts of individual eggs as a function of time. The highest titers were found in eggs produced at 22 to 35 days after initial injections. Yolk extracts showing the highest titers were combined and processed to provide partially purified IgY preparations. SDS-PAGE and immunoblot analyses identified protein antigens with Mr values of 23-24, 46, and 57-59 KDa common to both P20 and P100 endospores. One protein antigen with an Mr value of 62 KDa was unique to the PI00 endospores. The IgY antibodies reduced the attachment of Pasteuria endospores to their nematode hosts, indicating antibody interaction with antigens on the endospore surface that are involved in the recognition and attachment processes.  相似文献   

11.
The effect of temperature (10, 20, 25, 30, and 35 C) on attachment and development of Pasteuria penetrans on Meloidogyne arenaria race 1 was elevated in growth chambers. The greatest attachment rate of endospores of P. penetrans occurred on second-stage juveniles at 30 C. The bacterium developed more quickly within its host at 30 and 35 C than at 25 C or below. The development of the bacterium within the nematode female was divided into nine recognizable life stages, which ranged from early vegetative thalli to mature sporangia. Mature sporangium was the predominant life stage observed after 35, 40, 81, and 116 days at 35, 30, 25, and 20 C, respectively. The body width and length of M. arenaria females infected with P. penetrans were smaller initially than the same dimensions in uninfected females, but became considerably larger over time at 25, 30, and 35 C. This isolate of P. penetrans also parasitized and completed its life cycle in males of M. arenaria.  相似文献   

12.
Pasteuria penetrans isolate P-20 has been attributed as the cause of soil suppressiveness to peanut root-knot nematode in Florida. In this study, P. penetrans was transferred from a suppressive site to a new site and established by growing susceptible hosts to the peanut root-knot nematode during both summer and winter seasons. When two soil fumigants, 1,3-dichloropropene (1,3-D) and chloropicrin, were applied broadcast at the rate of 168 liters/ha and 263 kg/ha, respectively, the bacterium was not adversely affected by 1,3-D but was adversely affected by chloropicrin. In autumn 2005, after the harvest of the second peanut crop, the greatest number of J2 was recorded in the chloropicrin-treated plots, followed by the non-fumigated plots and 1,3-D-fumigated plots. The percentage J2 encumbered with endospores, endospores per J2 and percentage of P. penetrans-infected females were greatest in the non-fumigated plots, followed by 1,3-D- and chloropicrin-fumigated plots. This study demonstrates that P. penetrans can be transferred from a suppressive site to a new site and increased to suppressive densities against the peanut root-knot nematode.  相似文献   

13.
Pasteuria penetrans has .been identified as an important biological control agent of root-knot nematodes. In this study the use of tally thresholds was evaluated for estimating P. penetrans endospore attachment to second-stage juveniles (J2) of Meloidogyne spp. A tally threshold (T) is defined as the maximum number of individuals in a sample unit that may be treated as absent based on binomial sampling. Three different data sets that originated from centrifugal bioassay, incubation bioassay, and field experiments were investigated. The data sets each contained 70, 33, and 111 estimates of the mean number of endospores attached per J2 (m), respectively. Empirical relationships between m and proportions of J2 with ≤T endospores attached (PT) were developed using parameters from the linear regression of ln(m) on PT (0 < PT < 1): ln(m) = a + b PT, T was set to 0, 1, 2, 3, 4, 5, 8, and 10 endospores/J2. The results indicated that the variances of linear equations tended to decrease with increasing T values for all three data sets. T values of 0, 1, 8, and 10 endospores/J2 for centrifugal bioassay and incubation bioassay, and of 0, 1, 2, and 3 endospores/J2 for field experiments were associated with an r² of >= 0.8. These T values were robust for estimating m from PT, reducing the variability as well as the time and effort spent in estimating the mean number of endospores attached per J2.  相似文献   

14.
The root-knot nematode Meloidogyne incognita was controlled more effectively and yields of host plants were greater when Paecilomyces lilacinus and Pasteuria penetrans were applied together in field microplots than when either was applied alone. Yields of winter vetch from microplots inoculated with the nematode and with both organisms were not statistically different from yields from uninoculated control plots.  相似文献   

15.
Pasteuria penetrans spore adhesion to Meloidogyne javanica second-stage juveniles (J2) was examined following several different pretreatments of the latter. The detergents sodium dodecyl sulfate and Triton X-100, the carbohydrates fucose and α-methyl-D-mannoside, and the lectins concanavalin A and wheat germ agglutinin reduced spore attachment. Spores exposed to M. javanica surface coat (SC) extract exhibited decreased adherence to the J2 surface. Second-stage juveniles that had been treated with antibodies recognizing a 250-kDa antigen of J2 SC extract had fewer spores attached to their surfaces, as compared to nontreated J2, except in the head region. This inhibition pattern was similar to that of antibody-labelling on M. javanica J2 as observed by electron microscopy. It is suggested that several SC components, such as carbohydrate residues, carbohydrate-recognition domains, and a 250-kDa antigen, are involved in P. penetrans spore attachment to the surface of M. javanica.  相似文献   

16.
The synthesis and localization of an endospore surface epitope associated with the development of Pasteuria penetrans was determined using a monoclonal antibody (MAb) as a probe. Nematodes, uninfected or infected with P. penetrans, were harvested at 12, 16, 24, and 38 days after inoculation (DAI) and then examined to determine the developmental stage of the bacterium. Vegetative growth of P. penetrans was observed only in infected nematodes harvested at 12 and 16 DAI, whereas cells at different stages of sporulation and mature endospores were observed at 24 and 38 DAI. ELISA and immunoblot analysis revealed that the adhesin-associated epitope was first detected at 24 DAI, and increased in the later stages of sporogenesis. These results indicate that the synthesis of adhesin-related proteins occurred at a certain developmental stage relative to the sporulation process, and was associated with endospore maturation. Immunofluorescence microscopy indicated that the distribution of the epitope is nearly uniform on the periphery of each spore, as defined by parasporal fibers. Immunocytochemistry at the ultrastructural level indicated a distribution of the epitope over the parasporal fibers. The epitope also was detected over other structures such as sporangium and exosporium during the sporogenesis process, but it was not observed over the cortex, inner-spore coat, outer-spore coat, or protoplasm. The appearance of the adhesin epitope first at stage III of sporogenesis and its presence on the parasporal fibers are consistent with an adhesin-related role in the attachment of the mature endospore to the cuticle of the nematode host.  相似文献   

17.
Segregation of resistance to Meloidogyne arenaria in six BC₅F₂ peanut breeding populations was examined in greenhouse tests. Chi-square analysis indicated that segregation of resistance was consistent with resistance being conditioned by a single gene in three breeding populations (TP259-3, TP262-3, and TP271-2), whereas two resistance genes may be present in the breeding populations TP259-2, TP263-2, and TP268-3. Nematode development in clonally propagated lines of resistant individuals of TP262-3 and TP263-2 was compared to that of the susceptible cultivar Florunner. Juvenile nematodes readily penetrated roots of all peanut genotypes, but rate of development was slower (P = 0.05) in the resistant genotypes than in Florunner. Host cell necrosis indicative of a hypersensitive response was not consistently observed in resistant genotypes of either population. Three RFLP loci linked to resistance at distances of 4.2 to 11.0 centiMorgans were identified. Resistant and susceptible alleles for RFLP loci R2430E and R2545E were quite distinct and are useful for identifying individuals homozygous for resistance in segregating populations.  相似文献   

18.
Microplot experiments were conducted in 1989 and 1990 to determine the relationship between yield of peanut (Arachis hypogaea) and inoculum density ofMeloidogyne arenaria race 1. Nine inoculum densities were used, ranging from 0-200 eggs/100 cm³ soil (1989) or from 0-100 eggs/100 cm³ (1990), and each density was replicated 10 times. In 1989, higher final densities (mean of 1,171 juveniles [J2]/100 cm³ soil) were obtained in plots inoculated with 0.5 to 50 eggs/100 cm³ soil than in plots inoculated with 100 to 200 eggs/100 cm³ (313 J2/100 cm³ soil). In 1990, final densities of M. arenaria reached high levels (≥ 1,111 J2/100 cm³ soil) in all inoculated plots. Pod yield and dry weight of foliage at harvest were negatively correlated (P ≤ 0.05) with inoculum density in both seasons. In 1989, the relationship between pod weight (y) and initial density (x) was described by Seinhorst''s equation, with y = 0.088 + 0.91(0.90)⁽x⁻¹⁾ and r² = 0.826. In 1990, the relationship was y = 0.22 + 0.78(0.97)⁽x⁻¹⁾ and r² = 0.794. These equations suggest tolerance limits of approximately 1 egg/100 cm³ soil, which may require specialized methods, such as bioassay, for detection.  相似文献   

19.
Resistance to Meloidogyne arenaria in the peanut cultivar COAN is inherited as a single, dominant gene. The mechanism of resistance to M. arenaria in COAN was evaluated in three experiments. In the first experiment the number of second-stage juveniles (J2) of M. arenaria penetrating roots of the susceptible cultivar Florunner was higher than the number of J2 penetrating roots of the resistant peanut cultivar COAN (P < 0.05). In a second experiment it was determined that the root size and number of potential infection courts (root tips) were similar for the two peanut cultivars. The number of nematodes emigrating from roots of COAN after penetration was greater than emigrated from roots of Florunner (P < 0.05). Necrotic host tissue was rarely observed in roots of COAN infected with M. arenaria, suggesting that resistance to M. arenaria does not involve a necrotic, hypersensitive response. Most of the J2 observed in roots of COAN were restricted to the cortical tissue, with only 1 of 90 J2 observed being associated with the vascular cylinder, whereas in Florunner >70% of the J2 were associated with vascular tissues. Resistance in COAN may be due to constitutive factors in the roots.  相似文献   

20.
Field observations have suggested that infection of peanut by Meloidogyne arenaria increases the incidence of southern blight caused by Sclerotium rolfsii. Three factorial experiments in microplots were conducted to determine if interactions between M. arenaria and S. rolfsii influenced final nematode population densities, incidence of southern blight, or pod yield. Treatments included four or five initial population densities of M. arenaria and three inoculum rates of S. rolfsii. Final nematode population densities were affected by initial nematode densities in all experiments (P = 0.01) and by S. rolfsii in one of three experiments (P = 0.01). Incidence of southern blight increased with increasing inoculum rates of S. rolfsii in all experiments and by the presence of the nematodes in one experiment (P = 0.01). Pod yield decreased with inoculation with S. rolfsii in all experiments (P = 0.05) and by M. arenaria in two of three experiments (P = 0.05). In no experiment was the interaction among treatments significant with respect to final nematode population densities, incidence of southern blight, or pod yield (P = 0.05). The apparent disease complex between M. arenaria and S. rolfsii on peanut is due to additive effects of the two pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号