首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

2.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

3.
We report the molecular analysis of a 130-kb DNA region containing a junction between beta and non-beta satellite DNA from chromosome 15p. The genomic region is characterized by beta satellite blocks intermingled with variants of the D4Z4 repeat, and duplicons from 4q24 and 4q35. Besides the p-arm of acrocentric chromosomes, the duplicons showed a wide genomespread involving pericentromeric, sub-telomeric, and interstitial regions. In this regard, the paralogous sequences were characterized by a high similarity index (96%), thus indicating a recent transposition during the evolution. The acrocentrics differedwith regard to the location of the 4q24 paralogous region, since it mapped on the p-arm of chromosomes 13-15 and 21, but only on 22q11.2. Conversely, the 4q35 duplication marked the p-arm of all the acrocentrics. In different individuals, the short arm of acrocentric chromosomes revealed a great variability of sequence representation and location at p11 and/or p13 for both the 4q24 and 4q35 duplications. The studied genomic region from chromosome 15p, of which a contig of approximately 200 kb has been derived, could lead to more detailed investigations into the sequence organization and possible biological function of chromosome regions that are located close to the rDNA array.  相似文献   

4.
We constructed a long range restriction map of the pericentromeric 21q region between the centromere, identified by the alphoid DNA sequence D21Z1, and D21S13E. The physical map showed the order and intermarker distances of five new loci, including two for which highly informative dinucleotide repeat polymorphisms were identified. The total distance between D21Z1 and D21S13E was 2400 kb. Comparison of genetic and physical distances indicated that there is about 400 to 500 kb per centimorgan that is not significantly different from the average 470 kb per centimorgan for the whole of chromosome 21q. Our physical mapping results do not indicate suppression of recombination in pericentromeric 21q.  相似文献   

5.
We have employed molecular probes and in situ hybridization to investigate the DNA sequences flanking the breakpoint of a group of t(14q21q) Robertsonian translocations. In all the families studied, the probands were patients with Down syndrome who carried a de novo t(14q21q) translocation. The DNA probes used were two alphoid sequences, alphaRI and alphaXT, which are specific for the centromeres of chromosomes 13 and 21 and of chromosomes 14 and 22, respectively; a satellite III sequence, pTRS-47, which is specific for the proximal p11 region of chromosomes 14 and 22; and a newly defined satellite III DNA, pTRS-63, which is specific for the distal p11 region of chromosome 14. The two alphoid probes detected approximately the same amount of autoradiographic signal on the translocated chromosomes as was expected for chromosomes 14 and 21 of the originating parent, suggesting that there has been no loss of these centromeric sequences during the translocation events. Results with the two satellite III probes indicated that the domain corresponding to pTRS-47 was retained in the translocated chromosomes, whereas the domain for pTRS-63 was lost. These results have allowed us to place the translocation breakpoint between the pTRS-47 and pTRS-63 domains within the p11 region of chromosome 14.  相似文献   

6.
We have assigned six polymorphic DNA segments to chromosomal subregions and have established the physical order of these sequences on the long arm of chromosome 21 by in situ hybridization of cloned probes to normal metaphase chromosomes and chromosomes 21 from individuals with three different structural rearrangements: an interstitial deletion, a ring chromosome, and a reciprocal translocation involving four different breakpoints in band 21q22. Segments D21S1 and D21S11 map to region 21q11.2----q21, D21S8 to 21q21.1----q22.11, and D21S54 to 21q21.3----q22.11; D21S23 and D21S25 are both in the terminal subband 21q22.3, but they are separated by a chromosomal breakpoint in a ring 21 chromosome, a finding that places D21S23 proximal to D21S25. The physical map order D21S1/D21S11-D21S8-D21S54-D21S23-D21S25 agrees with the linkage map, but genetic distances are disproportionately larger toward the distal end of 21q.  相似文献   

7.
Thirty-five single-copy and 17 repetitive sequence DNA probes specific for human chromosome 3 were isolated from human chromosome 3-derived genomic libraries. Seven DNA clones, including three that are polymorphic for BglII or MspI, were mapped by in situ hybridization. Four probes were mapped to 3p subregions and 3 were mapped to 3q subregions. Three of the DNA sequences map to regions overlapping a segment of chromosome 3 (3p14-23) frequently deleted in small cell lung cancer cells. By Southern blot analysis on a deletion hybrid panel, we previously mapped 6 of these probes to three distinct chromosome 3 subregions. Our in situ data support these assignments and more precisely determine the localization of each clone to the following regions: D3S34 (3p14-21), D3S35 (3p21), D3S39 (3p21), D3S40 (3p12-13), D3S37 (3q21-23), and D3S36 (3q21). Clone pL84c, a low repeat sequence clone (approximately 30 copies), was mapped to the 3q21-29 subregion. These DNA clones mapped by in situ hybridization can provide useful landmarks for the ordering and localization of other clones.  相似文献   

8.
We analyzed the conservation of large paralogous regions (more than 200 kb) on human chromosome regions 21q22.1 and 21q11.2 and on pericentromeric regions of chromosomes 2, 13, and 18 in three nonhuman primate species. Orthologous regions were found by FISH analysis of metaphase chromosomes from Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus. Only one orthologous region was detected in chromosomes of P. pygmaeus, showing that the original locus was at 21q22.1 and that the duplication arose after the separation of Asian orangutans from the other hominoids. Surprisingly, the paralogous regions were more highly conserved in gorilla than in chimpanzee. PCR amplification of STSs derived from sequences of the chromosome 21 loci and low-stringency FISH analysis showed that this duplication occurred recently in the evolution of the genome. Different rates of sequence evolution through substitutions or deletions, after the duplication, may have resulted in diversity between closely related primates.  相似文献   

9.
Summary Ten families (Down syndrome children and their parents) showing evidence of meiotic recombination between intraparental chromosomes transmitted after nondisjunction were studied. Cytogenetic polymorphisms and a cassette of RFLP markers distributed along chromosome 21 were used to analyze these families to localize the regions of meiotic recombination. Results indicated that only one crossover occurred per meiotic division and that nine of ten nondisjunctions appeared to be of maternal origin. In one family the crossover had taken place in the pericentromeric region, proximal to marker D21S13, which is quite exceptional. A chance of meiotic recombination within region 21q21, flanked by marker D21S72 and the amyloid gene, could be demonstrated in seven of the ten families. Most strikingly, this chance significantly decreased distal to q21, with frequencies of 0.3 and 0.1 in regions q22.2 and q22.3-qter, respectively. It is hypothesized that decreased chiasmata formation in the most distal part of chromosome 21q might promote nondisjunction. Furthermore, data from the ten crossovers made it possible to map provisionally two previously undefined markers, D21S24 and D21S82, to regions q21-qter and q22.1-qter, respectively.  相似文献   

10.
Down syndrome (DS) is a major cause of mental retardation and heart disease. Although it is usually caused by the presence of an extra chromosome 21, a subset of the diagnostic features may be caused by the presence of only band 21q22. We now present evidence that significantly narrows the chromosomal region responsible for several of the phenotypic features of DS. We report a molecular and cytogenetic analysis of a three-generation family containing four individuals with clinical DS as manifested by the characteristic facial appearance, endocardial cushion defect, mental retardation, and probably dermatoglyphic changes. Autoradiograms of quantitative Southern blots of DNAs from two affected sisters, their carrier father, and a normal control were analyzed after hybridization with two to six unique DNA sequences regionally mapped on chromosome 21. These include cDNA probes for the genes for CuZn-superoxide dismutase (SOD1) mapping in 21q22.1 and for the amyloid precursor protein (APP) mapping in 21q11.2-21.05, in addition to six probes for single-copy sequences: D21S46 in 21q11.2-21.05, D21S47 and SF57 in 21q22.1-22.3, and D21S39, D21S42, and D21S43 in 21q22.3. All sequences located in 21q22.3 were present in three copies in the affected individuals, whereas those located proximal to this region were present in only two copies. In the carrier father, all DNA sequences were present in only two copies. Cytogenetic analysis of affected individuals employing R and G banding of prometaphase preparations combined with in situ hybridization revealed a translocation of the region from very distal 21q22.1 to 21qter to chromosome 4q. Except for a possible phenotypic contribution from the deletion of chromosome band 4q35, these data provide a molecular definition of the minimal region of chromosome 21 which, when duplicated, generates the facial features, heart defect, a component of the mental retardation, and probably several of the dermatoglyphic changes of DS. This region may include parts of bands 21q22.2 and 21q22.3, but it must exclude the genes S0D1 and APP and most of band 21q22.1, specifically the region defined by S0D1, SF57 and D21S47.  相似文献   

11.
Comparative fluorescence in situ hybridization mapping using DNA libraries from flow-sorted mouse chromosomes and region-specific mouse BAC clones on rat chromosomes reveals chromosomal homologies between mouse (Mus musculus, MMU) and rat (Rattus norvegicus, RNO). Each of the MMU 2, 3, 4, 6, 7, 9, 12, 14, 15, 16, 18, 19, and X chromosomes paints only a single rat chromosome or chromosome segment and, thus, the chromosomes are largely conserved between the two species. In contrast, the painting probes for MMU chromosomes 1, 5, 8, 10, 11, 13, and 17 produce split hybridization signals in the rat, disclosing evolutionary chromosome rearrangements. Comparative mapping data delineate several large linkage groups on RNO 1, 2, 4, 7, and 14 that are conserved in human but diverged in the mouse. On the other hand, there are linkage groups in the mouse, i.e., on MMU 1, 8, 10, and 11, that are disrupted in both rat and human. In addition, we have hybridized probes for Nap2, p57, Igf2, H19, and Sh3d2c from MMU 7 to RNO 1q and found the orientation of the imprinting gene cluster and Sh3d2c to be the same in mouse and rat. Hybridization of rat genomic DNA shows blocks of (rat-specific) repetitive sequences in the pericentromeric region of RNO chromosomes 3-5, 7-13, and 20; on the short arms of RNO chromosomes 3, 12, and 13; and on the entire Y chromosome.  相似文献   

12.
G MacDonald  M L Chu  D R Cox 《Genomics》1991,11(2):317-323
Comparative mapping of human and mouse DNA for regions of genetic homology between human Chromosome 21 and the mouse genome is of interest because of the possibility of developing mouse models of human trisomy 21 (Down syndrome), understanding chromosome evolution, and isolating novel sequences conserved between the two species. At least two mouse chromosomes are known to carry sequences homologous to those on human Chromosome 21: mouse Chromosome 16 (D21S16h, D21S13h, D21S52h, App, Sod-1, Mx-1, Ets-2, Prgs,Ifnar) and mouse Chromosome 17 (D21S56h, Crya-1, and Cbs). Recently, five additional genes have been mapped within region 21q22 of human Chromosome 21:PFKL, CD18, COL6A1, COL6A2, and S100B. To assign these sequences to specific mouse chromosomes, we used human cDNA probes for COL6A1, COL6A2, CD18, and PFKL and a rat brain cDNA probe for S100B in conjunction with a panel of seven Chinese hamster-mouse somatic cell hybrids segregating mouse chromosomes. The specific chromosome complements of the hybrid cell lines and the presence or absence of hybridizing mouse sequences in their DNAs allow us to assign all five sequences to mouse Chromosome 10, with the assignment of Pfkl reported here for the first time. Analysis of genomic mouse DNA fragments produced by digestion with rare-cutting restriction enzymes and separated using pulsed-field gel electrophoresis allows us to construct a fine-structure physical map of two segments of the region of Chromosome 10 containing these five markers. The five loci span at least 1900 kb of mouse DNA and are consistent with the human order: Pfkl-Cd-18-Col6a-1-Col6a-2-S100b.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The experiment on individual chromosome assignments and chromosomal diversity was conducted using a multi-probe fluorescence in situ hybridization (FISH) system in D subgenome of tetraploid Gossypium barbadense (D(b)), G. thurberi (D(1)) and G. trilobum (D(8)), which the later two were the possible subgenome donors of tetraploid cottons. The FISH probes contained a set of bacterial artificial chromosome (BAC) clones specific to 13 individual chromosomes from D subgenome of G. hirsutum (D(h)), a D genome centromere-specific BAC clone 150D24, 45S and 5S ribosomal DNA (rDNA) clones, respectively. All tested chromosome orientations were confirmed by the centromere-specific BAC probe. In D(1) and D(8), four 45S rDNA loci were found assigning at the end of the short arm of chromosomes 03, 07, 09 and 11, while one 5S rDNA locus was successfully marked at pericentromeric region of the short arm of chromosome 09. In D(b), three 45S rDNA loci and two 5S rDNA loci were found out. Among them, two 45S rDNA loci were located at the terminal of the short arm of chromosomes D(b)07 and D(b)09, whilst one 5S rDNA locus was found situating near centromeric region of the short arm of chromosome D(b)09. The positions of the BAC clones specific to the 13 individual chromosomes from D(h) were compared between D(1), D(8) and D(b). The result showed the existence of chromosomal collinearity within D(1) and D(8), and as well between them and D(b). The results will serve as a base for understanding chromosome structure of cotton and polyploidy evolution of cotton genome and will provide bio-information for assembling the sequences of finished and the on-going cotton whole genome sequencing projects.  相似文献   

14.
Summary Thirteen single-copy, chromosome-21-specific DNA probes were isolated from a recombinant library made from flow-sorted chromosome 21 DNA and regionally mapped using a panel of somatic cell hybrids. Five probes mapped in the 21q21-q22.1 region, six to the 21q22.1-qter region, and one to each of the regions 21q22.1-q22.2 and 21q22.3. Two of these probes, one of which maps in the critical region for Down syndrome, have recently been shown to be expressed at high levels in Down syndrome brain tissue (Stefani et al. 1988). Following preliminary screening for restriction fragment lenght polymorphisms (RFLPs), five polymorphisms were discovered with four of the chromosome 21 DNA probes. A frequent MspI polymorphism detected by one of the probes was used in conjunction with four previously described polymorphic chromosome 21 probes to analyse the origin of nondisjunction in 33 families with a child or fetus with trisomy 21. The parental origin of the additional chromosome 21 was determined in 12 cases: in 9 (75%) of these it was derived from the mother and in the other 3 cases (25%) it was of paternal origin. Cytogenetic analysis of Q-banding heteromorphisms was informative in three of five families tested, and in each case the RFLP results were confirmed. The meiotic stage of nondisjunction was defined with confidence in five families, the results being obtained with pericentromeric RFLP or cytogenetic markers. Recombination between two nondisjoined chromosomes was demonstrated in one family and is consistent with the view that a lack of recombination between chromosome 21 homologues or failure of their conjunction is not the invariable cause of trisomy 21.  相似文献   

15.
The predominant chromosomal locations of human satellite I DNA were detected using fluorescent in situ hybridization (FISH). Synthetic deoxyoligonucleotides designed from consensus sequences of the simple sequence repeats of satellite 1 were used as probes. The most abundant satellite I repeat, the-A-B-A-B-A-form, is located at the pericentromeric regions of chromosomes 3, 4, 13, 14, 15, 21, and 22. The less abundant-B-B-B-form was not detected on chromosome 4, but was present at all the other locations. A variation of FISH that allows strand-specific hybridization of single-stranded probes (CO-FISH) determined that the human satellite I sequences are predominantly arranged in head-to-tail fashtion along the DNA strand.  相似文献   

16.
Cat eye syndrome (CES) is associated with a supernumerary bisatellited marker chromosome which is derived from duplicated regions of 22pter-22q11.2. In this study we have used dosage and RFLP analyses on 10 CES patients with marker chromosomes, by using probes to five loci mapped to 22q11.2. The sequences recognized by the probes D22S9, D22S43, and D22S57 are in four copies in all patients, but the sequences at the more distal loci, D22S36 and D22S75, are duplicated only in some individuals. D22S36 is present in three copies in some individuals, and D22S75 is present in two copies in the majority of cases. Only three individuals have a duplication of the most distal locus examined (D22S75), and these individuals have the largest marker chromosomes identified in this study. From the dosage analysis it was found that the marker chromosomes are variable in size and can be asymmetric in nature. There is no obvious correlation between the severity of the phenotype and the size of the duplication. The distal boundary of the CES critical region (D22S36) is proximal to that of DiGeorge syndrome, a contiguous-gene-deletion syndrome of 22q11.2.  相似文献   

17.
18.
We have isolated and characterized DNA probes that detect homologies between the X and Y chromosomes. Clone St25 is derived from the q13-q22 region of the X chromosome and recognizes a 98% homologous sequence on the Y chromosome. Y specific fragments were present in DNAs from 5 Yq-individuals and from 4 out of 7 XX males analysed. An X linked TaqI RFLP is detected with the St25 probe (33% heterozygosity) which should allow one to establish a linkage map including other polymorphic X-Y homologous sequences in this region and to compare it to a Y chromosome deletion map. Probe DXS31 located in Xp223-pter detects a 80% homologous sequence in the Y chromosome. The latter can be assigned to Yq11-qter outside the region which contains the Y specific satellite sequences. ACT1 and ACT2, the actin sequences present on the X and Y chromosomes respectively, have been cloned. No homology was detected between the X and Y derived fragments outside from the actin sequence. ACT2 and the Y specific sequence corresponding to DXS31 segregate together in a panel of Y chromosomes aberrations, and might be useful markers for the region important for spermatogenesis in Yq. Various primate species were analysed for the presence of sequences homologous to the three probes. Sequences detected by St25 and DXS31 are found only on the X chromosome in cercopithecoidae. The sequences which flank ACT2 detect in the same species autosomal fragments but no male specific fragments. It is suggested that the Y chromosome acquired genetic material from the X chromosome and from autosomes at various times during primate evolution.  相似文献   

19.
Subtelomeric regions have been a target of structural and functional studies of human chromosomes. Markers having a defined structure are especially useful to such studies. Here, we report 93 bp tandem repeat sequences found in the subtelomeric region of human chromosome 21q. They were also detected in the telomeric region of several other chromosomes. Interestingly, the repeat was also found in the 2q13 region which is known to be a position of chromosomal fusion, a major difference between the human and chimpanzee karyotypes. To the best of our knowledge, this repetitive sequence is a new member of human subtelomeric interspersed repeats.  相似文献   

20.
Microdissection of the chromocenter of D. virilis salivary gland polytene chromosomes has been carried out and the region-specific DNA library (DvirIII) has been obtained. FISH was used for DvirIII hybridization with salivary gland polytene chromosomes and ovarian nurse cells of D. virilis and D. kanekoi. Localization of DvirIII in the pericentromeric regions of chromosomes and in the telomeric region of chromosome 5 was observed in both species. Moreover, species specificity in the localization of DNA sequences of DvirIII in some chromosomal regions was detected. In order to study the three-dimensional organization of pericentromeric heterochromatin region of polytene chromosomes of ovarian nurse cells of D. virilis and D. kanekoi, 3S FISH DvirIII was performed with nurse cells of these species. As a result, species specificity in the distribution of DvirIII signals in the nuclear space was revealed. Namely, the signal was detected in the local chromocenter at one pole of the nucleus in D. virilis, while the signal from the telomeric region of chromosome 5 was detected on another pole. At the same time, DvirIII signals in D. kanekoi are localized in two separate areas in the nucleus: the first belongs to the pericentromeric region of chromosome 2 and another to pericentromeric regions of the remaining chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号