首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Masking is known to affect a variety of circadian rhythms, making it difficult to use them as reliable markers of circadian phase position. Melatonin may be unique in that it appears to be masked only by (bright) light. Sleep and activity do not appear to influence the melatonin rhythm. By measuring the onset of melatonin production, a clearly demarcated event, we can reliably assess circadian phase position, provided blood is sampled under dim light (the dim light melatonin onset, or DL.MO). The DLMO has been useful in assessing the phase-shifting properties of bright light and in phase typing patients with chronobiologic disorders, such as winter depression.  相似文献   

2.
The authors' previous experiments have shown that dawn simulation at low light intensities can phase advance the circadian rhythm of melatonin in humans. The aim of this study was to compare the effect of repeated dawn signals on the phase position of circadian rhythms in healthy participants kept under controlled light conditions. Nine men participated in two 9-day laboratory sessions under an LD cycle 17.5:6.5 h, < 30:0 lux, receiving 6 consecutive daily dawn (average illuminance 155 lux) or control light (0.1 lux) signals from 0600 to 0730 h (crossover, random-order design). Two modified constant routine protocols before and after the light stimuli measured salivary melatonin (dim light melatonin onset DLMOn and offset DLMOff) and rectal temperature rhythms (midrange crossing time [MRCT]). Compared with initial values, participants significantly phase delayed after 6 days under control light conditions (at least -42 min DLMOn, -54 min DLMOff, -41 min MRCT) in spite of constant bedtimes. This delay was not observed with dawn signals (+10 min DLMOn, +2 min DLMOff, 0 min MRCT). Given that the endogenous circadian period of the human circadian pacemaker is slightly longer than 24 h, the findings suggest that a naturalistic dawn signal is sufficient to forestall this natural delay drift. Zeitgeber transduction and circadian system response are hypothesized to be tuned to the time-rate-of-change of naturalistic twilight signals.  相似文献   

3.
The onset of melatonin secretion in the evening is the most reliable and most widely used index of circadian timing in humans. Saliva (or plasma) is usually sampled every 0.5–1 hours under dim-light conditions in the evening 5–6 hours before usual bedtime to assess the dim-light melatonin onset (DLMO). For many years, attempts have been made to find a reliable objective determination of melatonin onset time either by fixed or dynamic threshold approaches. The here-developed hockey-stick algorithm, used as an interactive computer-based approach, fits the evening melatonin profile by a piecewise linear-parabolic function represented as a straight line switching to the branch of a parabola. The switch point is considered to reliably estimate melatonin rise time. We applied the hockey-stick method to 109 half-hourly melatonin profiles to assess the DLMOs and compared these estimates to visual ratings from three experts in the field. The DLMOs of 103 profiles were considered to be clearly quantifiable. The hockey-stick DLMO estimates were on average 4 minutes earlier than the experts' estimates, with a range of ?27 to +13 minutes; in 47% of the cases the difference fell within ±5 minutes, in 98% within ?20 to +13 minutes. The raters' and hockey-stick estimates showed poor accordance with DLMOs defined by threshold methods. Thus, the hockey-stick algorithm is a reliable objective method to estimate melatonin rise time, which does not depend on a threshold value and is free from errors arising from differences in subjective circadian phase estimates. The method is available as a computerized program that can be easily used in research settings and clinical practice either for salivary or plasma melatonin values.  相似文献   

4.
Exercise can phase shift the circadian rhythms of young adults if performed at the right time of day. Similar research has not been done in older adults. This study examined the circadian phase-delaying effects of a single 3-h bout of low-intensity nocturnal exercise in older (n = 8; 55-73 yr old) vs. young (n = 8; 20-32 yr old) adults. The exercise occurred at the beginning of each subject's habitual sleep time, and subjects sat in a chair in dim light during the corresponding time in the control condition. The dim-light melatonin onset (DLMO) was used as the circadian phase marker. The DLMO phase delayed more after the exercise than after the control condition. On average, the difference in phase shift between the exercise and control conditions was similar for older and young subjects, demonstrating that the phase-shifting effects of exercise on the circadian system are preserved in older adults. Therefore, exercise may potentially be a useful treatment to help adjust circadian rhythms in older and young adults.  相似文献   

5.
Shift workers and transmeridian travelers are exposed to abnormal work-rest cycles, inducing a change in the phase relationship between the sleep-wake cycle and the endogenous circadian timing system. Misalignment of circadian phase is associated with sleep disruption and deterioration of alertness and cognitive performance. Exercise has been investigated as a behavioral countermeasure to facilitate circadian adaptation. In contrast to previous studies where results might have been confounded by ambient light exposure, this investigation was conducted under strictly controlled very dim light (standing approximately 0.65 lux; angle of gaze) conditions to minimize the phase-resetting effects of light. Eighteen young, fit males completed a 15-day randomized clinical trial in which circadian phase was measured in a constant routine before and after exposure to a week of nightly bouts of exercise or a nonexercise control condition after a 9-h delay in the sleep-wake schedule. Plasma samples collected every 30-60 min were analyzed for melatonin to determine circadian phase. Subjects who completed three 45-min bouts of cycle ergometry each night showed a significantly greater shift in the dim light melatonin onset (DLMO(25%)), dim light melatonin offset, and midpoint of the melatonin profile compared with nonexercising controls (Student t-test; P < 0.05). The magnitude of phase delay induced by the exercise intervention was significantly dependent on the relative timing of the exercise after the preintervention DLMO(25%) (r = -0.73, P < 0.05) such that the closer to the DLMO(25%), the greater the phase shift. These data suggest that exercise may help to facilitate circadian adaptation to schedules requiring a delay in the sleep-wake cycle.  相似文献   

6.
The dim light melatonin onset (DLMO) is the most reliable circadian phase marker in humans, but the cost of assaying samples is relatively high. Therefore, the authors examined differences between DLMOs calculated from hourly versus half-hourly sampling and differences between DLMOs calculated with two recommended thresholds (a fixed threshold of 3 pg/mL and a variable "3k" threshold equal to the mean plus two standard deviations of the first three low daytime points). The authors calculated these DLMOs from salivary dim light melatonin profiles collected from 122 individuals (64 women) at baseline. DLMOs derived from hourly sampling occurred on average only 6-8?min earlier than the DLMOs derived from half-hourly saliva sampling, and they were highly correlated with each other (r?≥?0.89, p?30?min from the DLMO derived from half-hourly sampling. The 3 pg/mL threshold produced significantly less variable DLMOs than the 3k threshold. However, the 3k threshold was significantly lower than the 3 pg/mL threshold (p?相似文献   

7.
The dim light melatonin onset (DLMO) is the most reliable circadian phase marker in humans, but the cost of assaying samples is relatively high. Therefore, the authors examined differences between DLMOs calculated from hourly versus half-hourly sampling and differences between DLMOs calculated with two recommended thresholds (a fixed threshold of 3 pg/mL and a variable “3k” threshold equal to the mean plus two standard deviations of the first three low daytime points). The authors calculated these DLMOs from salivary dim light melatonin profiles collected from 122 individuals (64 women) at baseline. DLMOs derived from hourly sampling occurred on average only 6–8?min earlier than the DLMOs derived from half-hourly saliva sampling, and they were highly correlated with each other (r?≥?0.89, p?<?.001). However, in up to 19% of cases the DLMO derived from hourly sampling was >30?min from the DLMO derived from half-hourly sampling. The 3 pg/mL threshold produced significantly less variable DLMOs than the 3k threshold. However, the 3k threshold was significantly lower than the 3 pg/mL threshold (p?<?.001). The DLMOs calculated with the 3k method were significantly earlier (by 22–24?min) than the DLMOs calculated with the 3 pg/mL threshold, regardless of sampling rate. These results suggest that in large research studies and clinical settings, the more affordable and practical option of hourly sampling is adequate for a reasonable estimate of circadian phase. Although the 3 pg/mL fixed threshold is less variable than the 3k threshold, it produces estimates of the DLMO that are further from the initial rise of melatonin. (Author correspondence: )  相似文献   

8.
9.
Introduction: The efficacy of bright light and/or melatonin treatment for Delayed Sleep Wake Phase Disorder (DSWPD) is contingent upon an accurate clinical assessment of the circadian phase. However, the process of determining this circadian phase can be costly and is not yet readily available in the clinical setting. The present study investigated whether more cost-effective and convenient estimates of the circadian phase, such as self-reported sleep timing, can be used to predict the circadian phase and guide the timing of light and/or melatonin treatment (i.e. dim-light melatonin onset, core body temperature minimum and melatonin secretion mid-point) in a sample of individuals with DSWPD. Method: Twenty-four individuals (male = 17; mean age = 21.96, SD = 5.11) with DSWPD were selected on the basis of ICSD-3 criteria from a community-based sample. The first 24-hours of a longer 80-hour constant laboratory ultradian routine were used to determine core body temperature minimum (cBTmin), dim-light melatonin onset (DLMO) and the midpoint of the melatonin secretion period (DLMmid = [DLM°ff–DLMO]/2). Prior to the laboratory session subjective sleep timing was assessed using a 7-day sleep/wake diary, the Pittsburgh Sleep Quality Index (PSQI), and the Delayed Sleep Phase Disorder Sleep Timing Questionnaire (DSPD-STQ). Results: Significant moderate to strong positive correlations were observed between self-reported sleep timing variables and DLMO, cBTmin and DLMmid. Regression equations revealed that the circadian phase (DLMO, cBTmin and DLMmid) was estimated within ±1.5 hours of the measured circadian phase most accurately by the combination of sleep timing measures (88% of the sample) followed by sleep diary reported midsleep (83% of the sample) and sleep onset time (79% of the sample). Discussion: These findings suggest that self-reported sleep timing may be useful clinically to predict a therapeutically relevant circadian phase in DSWPD.  相似文献   

10.
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean?±?SD age: 36.0?±?11.0 yrs of age, 10 women) who were 3-12 wks since their last drink (abstinence: 57.9?±?19.3 d) and 19 age- and sex-matched HCs (34.4?±?10.6 yrs, 5 women). Following a 23:00-06:00?h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00?h bedtime) during which salivary melatonin samples were collected every 30?min beginning at 19:30?h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02?±?00:41?h, than in HC, 20:44?±?00:21?h (t?=?-2.4, p?=?.02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18?min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats.  相似文献   

11.
Melatonin production by the pineal organ is influenced by light intensity, as has been described in most vertebrate species, in which melatonin is considered a synchronizer of circadian rhythms. In tench, strict nocturnal activity rhythms have been described, although the role of melatonin has not been clarified. In this study we investigated daily activity and melatonin rhythms under 12:12 light-dark (LD) conditions with two different light intensities (58.6 and 1091 microW/cm2), and the effect of I h broad spectrum white light pulses of different intensities (3.3, 5.3, 10.5, 1091.4 microW/cm2) applied at middarkness (MD) on nocturnal circulating melatonin. The results showed that plasma melatonin in tench under LD 12:12 and high light conditions displayed rhythmic variation, where values at MD (255.8 +/- 65.9 pg/ml) were higher than at midlight (ML) (70.7 +/- 31.9 pg/ml). Such a difference between MD and ML values was reduced in animals exposed to LD 12: 12 and low light intensity. The application of 1 h light pulses at MD lowered plasma melatonin to 111.6 +/- 3.2 pg/ml (in the 3.3-10.5 microW/cm2 range) and to 61.8 +/- 18.3 pg/ml (with the 1091.4 microW/cm2 light pulse) and totally suppressed nocturnal locomotor activity. These results show that melatonin rhythms persisted in tench exposed to low light intensity although the amplitude of the rhythm is affected. In addition, it was observed that light pulses applied at MD affected plasma melatonin content and locomotor activity. Such a low threshold suggests that the melatonin system is capable of transducing light even under dim conditions, which may be used by this nocturnal fish to synchronize to weak night light signals (e.g., moonlight cycles).  相似文献   

12.
Melatonin production by the pineal organ is influenced by light intensity, as has been described in most vertebrate species, in which melatonin is considered a synchronizer of circadian rhythms. In tench, strict nocturnal activity rhythms have been described, although the role of melatonin has not been clarified. In this study we investigated daily activity and melatonin rhythms under 12∶12 light‐dark (LD) conditions with two different light intensities (58.6 and 1,091 µW/cm2), and the effect of 1 h broad spectrum white light pulses of different intensities (3.3, 5.3, 10.5, 1,091.4 µW/cm2) applied at middarkness (MD) on nocturnal circulating melatonin. The results showed that plasma melatonin in tench under LD 12∶12 and high light conditions displayed rhythmic variation, where values at MD (255.8±65.9 pg/ml) were higher than at midlight (ML) (70.7±31.9 pg/ml). Such a difference between MD and ML values was reduced in animals exposed to LD 12∶12 and low light intensity. The application of 1 h light pulses at MD lowered plasma melatonin to 111.6±3.2 pg/ml (in the 3.3–10.5 µW/cm2 range) and to 61.8±18.3 pg/ml (with the 1,091.4 µW/cm2 light pulse) and totally suppressed nocturnal locomotor activity. These results show that melatonin rhythms persisted in tench exposed to low light intensity although the amplitude of the rhythm is affected. In addition, it was observed that light pulses applied at MD affected plasma melatonin content and locomotor activity. Such a low threshold suggests that the melatonin system is capable of transducing light even under dim conditions, which may be used by this nocturnal fish to synchronize to weak night light signals (e.g., moonlight cycles).  相似文献   

13.
Melatonin in humans can be an independent or dependent variable. Measurement of endogenous melatonin levels under dim-light conditions, particularly the dim-light melatonin onset (DLMO), has received increasing attention among researchers, and for clinicians it may soon become a convenient test that can be done at home using saliva collections in the evening, without interfering with sleep. Melatonin, even at low physiological doses, can cause advances (shifts to an earlier time) or delays (shifts to a later time) depending on when it is administered on its phase-response curve (in most sighted people, these times are approximately in the p.m. and in the a.m., respectively). Although both bright light and melatonin can be used separately or together in the treatment of circadian phase disorders in sighted people-such as advanced and delayed sleep phase syndromes, jet lag, shift-work maladaptation, and winter depression (seasonal affective disorder, or SAD)-melatonin is the treatment of choice in totally blind people. These people provide a unique opportunity to study the human circadian system without the overwhelming effects of ocularly mediated light, thus permitting us to establish that all blind free-runners (BFRs) studied under high resolution appear to have phase-advancing and phase-delaying responses to as yet unidentified zeitgebers (time givers) that are usually too weak to result in entrainment.  相似文献   

14.
A shorter phase angle between habitual wake time and underlying circadian rhythms has been reported in evening types (E types) compared to morning-types (M types). In this study, phase angles were compared between 12 E types and 12 M types to verify if this difference was observed when the sleep schedule was relatively free from external social constraints. Subjects were selected according to their Morningness-Eveningness Questionnaire score (MEQ score). There were 6 men and 6 women in each group (ages 19-34 years), and all had a habitual sleep duration between 7 and 9 h. Sleep schedule was recorded by actigraphy and averaged over 7 days. Circadian phase was estimated by the hour of temperature minimum (T(min)) in a 26-h recording and by the timing of the onset of melatonin secretion (dim-light melatonin onset [DLMO]) measured in saliva samples. Phase angles were defined as the interval between phase markers and averaged wake time. Results showed that, in the present experimental conditions, phase angles were very similar in the 2 groups of subjects. However, results confirmed the previously reported correlation between phase and phase angle, showing that a later circadian phase was associated with a shorter phase angle. Gender comparisons showed that for a same MEQ score, women had an earlier DLMO and a longer phase angle between DLMO and wake time. Despite a significant difference in the averaged circadian phases between E-type and M-type groups, there was an overlap in the circadian phases of the subjects of the 2 groups. Further comparisons were made between the 2 circadian types, separately for the subgroups with overlapping or nonoverlapping circadian phases. In both subgroups, the significant difference between MEQ scores, bedtimes, and wake times were maintained in the expected direction. In the subgroup with nonoverlapping circadian phases, phase angles were shorter in E-type subjects, in accordance with previous studies. However, in the overlapping subgroup, phase angles were significantly longer in E types compared to M types. Results suggest that the morningness-eveningness preference identified by the MEQ score refers to 2 distinct mechanisms, 1 associated with a difference in circadian period and phase of entrainment and the other associated with chronobiological aspects of sleep regulation.  相似文献   

15.
The human circadian system is maximally sensitive to short-wavelength (blue) light. In a previous study we found no difference between the magnitude of phase advances produced by bright white versus bright blue-enriched light using light boxes in a practical protocol that could be used in the real world. Since the spectral sensitivity of the circadian system may vary with a circadian rhythm, we tested whether the results of our recent phase-advancing study hold true for phase delays. In a within-subjects counterbalanced design, this study tested whether bright blue-enriched polychromatic light (17000 K, 4000 lux) could produce larger phase delays than bright white light (4100 K, 5000 lux) of equal photon density (4.2×1015 photons/cm2/sec). Healthy young subjects (n?=?13) received a 2 h phase delaying light pulse before bedtime combined with a gradually delaying sleep/dark schedule on each of 4 consecutive treatment days. On the first treatment day the light pulse began 3 h after the dim light melatonin onset (DLMO). An 8 h sleep episode began at the end of the light pulse. Light treatment and the sleep schedule were delayed 2 h on each subsequent treatment day. A circadian phase assessment was conducted before and after the series of light treatment days to determine the time of the DLMO and DLMOff. Phase delays in the blue-enriched and white conditions were not significantly different (DLMO: ?4.45±2.02 versus ?4.48±1.97 h; DLMOff: ?3.90±1.97 versus ?4.35±2.39 h, respectively). These results indicate that at light levels commonly used for circadian phase shifting, blue-enriched polychromatic light is no more effective than the white polychromatic lamps of a lower correlated color temperature (CCT) for phase delaying the circadian clock. (Author correspondence: )  相似文献   

16.
Melatonin concentration and core body temperature (CBT) follow endogenous circadian biological rhythms. In the evening, melatonin level increases and CBT decreases. These changes are involved in the regulation of the sleep-wake cycle. Therefore, the authors hypothesized that age-related changes in these rhythms affect sleep quality in older people. In a cross-sectional study design, 11 older poor-sleeping women (aged 62-72 yrs) and 9 older good-sleeping women (60-82 yrs) were compared with 10 younger good-sleeping women (23-28 yrs). The older groups were matched by age and body mass index. Sleep quality was assessed by the Pittsburgh Sleep Quality Index questionnaire. As an indicator of CBT, oral temperature was measured at 1-h intervals from 17:00 to 24:00?h. At the same time points, saliva samples were collected for determining melatonin levels by enzyme-linked immunosorbent assay (ELISA). The dim light melatonin onset (DLMO), characterizing the onset of melatonin production, was calculated. Evening changes in melatonin and CBT levels were tested by the Friedman test. Group comparisons were performed with independent samples tests. Predictors of sleep-onset latency (SOL) were assessed by regression analysis. Results show that the mean CBT decreased in the evening from 17:00 to 24:00?h in both young women (from 36.57°C to 36.25°C, p < .001) and older women (from 36.58°C to 35.88°C, p < .001), being lowest in the older poor sleepers (p < .05). During the same time period, mean melatonin levels increased in young women (from 16.2 to 54.1 pg/mL, p < .001) and older women (from 10.0 to 23.5 pg/mL, p < .001), being lowest among the older poor sleepers (from 20:00 to 24:00?h, p < .05 vs. young women). Older poor sleepers also showed a smaller increase in melatonin level from 17:00 to 24:00?h than older good sleepers (mean?±?SD: 7.0?±?9.63 pg/mL vs. 15.6?±?24.1 pg/mL, p = .013). Accordingly, the DLMO occurred at similar times in young (20:10?h) and older (19:57?h) good-sleeping women, but was delayed ~50?min in older poor-sleeping women (20:47?h). Older poor sleepers showed a shorter phase angle between DLMO and sleep onset, but a longer phase angle between CBT peak and sleep onset than young good sleepers, whereas older good sleepers had intermediate phase angles (insignificant). Regression analysis showed that the DLMO was a significant predictor of SOL in the older women (R(2)?=?0.64, p < .001), but not in the younger women. This indicates that melatonin production started later in those older women who needed more time to fall asleep. In conclusion, changes in melatonin level and CBT were intact in older poor sleepers in that evening melatonin increased and CBT decreased. However, poor sleepers showed a weaker evening increase in melatonin level, and their DLMO was delayed compared with good sleepers, suggesting that it is not primarily the absolute level of endogenous melatonin, but rather the timing of the circadian rhythm in evening melatonin secretion that might be related to disturbances in the sleep-wake cycle in older people.  相似文献   

17.
Jet lag degrades performance and operational readiness of recently deployed military personnel and other travelers. The objective of the studies reported here was to determine, using a narrow bandwidth light tower (500 nm), the optimum timing of light treatment to hasten adaptive circadian phase advance and delay. Three counterbalanced treatment order, repeated measures studies were conducted to compare melatonin suppression and phase shift across multiple light treatment timings. In Experiment 1, 14 normal healthy volunteers (8 men/6 women) aged 34.9±8.2 yrs (mean±SD) underwent light treatment at the following times: A) 06:00 to 07:00 h, B) 05:30 to 07:30 h, and C) 09:00 to 10:00 h (active control). In Experiment 2, 13 normal healthy subjects (7 men/6 women) aged 35.6±6.9 yrs, underwent light treatment at each of the following times: A) 06:00 to 07:00 h, B) 07:00 to 08:00 h, C) 08:00 to 09:00 h, and a no-light control session (D) from 07:00 to 08:00 h. In Experiment 3, 10 normal healthy subjects (6 men/4 women) aged 37.0±7.7 yrs underwent light treatment at the following times: A) 02:00 to 03:00 h, B) 02:30 to 03:30 h, and C) 03:00 to 04:00 h, with a no-light control (D) from 02:30 to 03:30 h. Dim light melatonin onset (DLMO) was established by two methods: when salivary melatonin levels exceeded a 1.0 pg/ml threshold, and when salivary melatonin levels exceeded three times the 0.9 pg/ml sensitivity of the radioimmunoasssy. Using the 1.0 pg/ml DLMO, significant phase advances were found in Experiment 1 for conditions A (p?<?.028) and B (p?<?0.004). Experiment 2 showed significant phase advances in conditions A (p?<?0.018) and B (p?<?0.003) but not C (p?<?0.23), relative to condition D. In Experiment 3, only condition B (p?<?0.035) provided a significant phase delay relative to condition D. Similar but generally smaller phase shifts were found with the 2.7 pg/ml DLMO method. This threshold was used to analyze phase shifts against circadian time of the start of light treatment for all three experiments. The best fit curve applied to these data (R2?=?0.94) provided a partial phase-response curve with maximum advance at approximately 9–11 h and maximum delay at approximately 5–6 h following DLMO. These data suggest largest phase advances will result when light treatment is started between 06:00 and 08:00 h, and greatest phase delays will result from light treatment started between 02:00 to 03:00 h in entrained subjects with a regular sleep wake cycle (23:00 to 07:00 h).  相似文献   

18.
Sleep disturbances in alcohol-dependent (AD) individuals may persist despite abstinence from alcohol and can influence the course of the disorder. Although the mechanisms of sleep disturbances of AD are not well understood and some evidence suggests dysregulation of circadian rhythms, dim light melatonin onset (DLMO) has not previously been assessed in AD versus healthy control (HC) individuals in a sample that varied by sex and race. The authors assessed 52 AD participants (mean?±?SD age: 36.0?±?11.0 yrs of age, 10 women) who were 3–12 wks since their last drink (abstinence: 57.9?±?19.3 d) and 19 age- and sex-matched HCs (34.4?±?10.6 yrs, 5 women). Following a 23:00–06:00?h at-home sleep schedule for at least 5 d and screening/baseline nights in the sleep laboratory, participants underwent a 3-h extension of wakefulness (02:00?h bedtime) during which salivary melatonin samples were collected every 30?min beginning at 19:30?h. The time of DLMO was the primary measure of circadian physiology and was assessed with two commonly used methodologies. There was a slower rate of rise and lower maximal amplitude of the melatonin rhythm in the AD group. DLMO varied by the method used to derive it. Using 3 pg/mL as threshold, no significant differences were found between the AD and HC groups. Using 2 standard deviations above the mean of the first three samples, the DLMO in AD occurred significantly later, 21:02?±?00:41?h, than in HC, 20:44?±?00:21?h (t?=??2.4, p?=?.02). Although melatonin in the AD group appears to have a slower rate of rise, using well-established criteria to assess the salivary DLMO did not reveal differences between AD and HC participants. Only when capturing melatonin when it is already rising was DLMO found to be significantly delayed by a mean 18?min in AD participants. Future circadian analyses on alcoholics should account for these methodological caveats. (Author correspondence: )  相似文献   

19.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean ± SD] age: 39.2 ± 12.5 yrs; mean yrs on shift = 9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6 ± 8.6 yrs; mean years on shift = 8.4) participated. All participants were admitted to the sleep center at 16:00 h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00 h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42 ± 3.25 h, whereas in the SWD group it was 20:42 ± 2.21 h (z = 2.4; p 相似文献   

20.
The guidelines for night and shift workers recommend that after night work, they should sleep in a dark environment during the daytime. However, staying in a dark environment during the daytime reduces nocturnal melatonin secretion and delays its onset. Daytime bright-light exposure after night work is important for melatonin synthesis the subsequent night and for maintaining the circadian rhythms. However, it is not clear whether daytime sleeping after night work should be in a dim- or a bright-light environment for maintaining melatonin secretion. The aim of this study, therefore, was to evaluate the effect of bright-light exposure during daytime sleeping on nocturnal melatonin secretion after simulated night work. Twelve healthy male subjects, aged 24.8 ± 4.6 (mean ± SD), participated in 3-day sessions under two experimental conditions, bright light or dim light, in a random order. On the first day, the subjects entered the experimental room at 16:00 and saliva samples were collected every hour between 18:00 and 00:00 under dim-light conditions. Between 00:00 and 08:00, they participated in tasks that simulated night work. At 10:00 the next morning, they slept for 6 hours under either a bright-light condition (>3000 lx) or a dim-light condition (<50 lx). In the evening, saliva samples were collected as on the first day. The saliva samples were analyzed for melatonin concentration. Activity and sleep times were recorded by a wrist device worn throughout the experiment. In the statistical analysis, the time courses of melatonin concentration were compared between the two conditions by three-way repeated measurements ANOVA (light condition, day and time of day). The change in dim light melatonin onset (ΔDLMO) between the first and second days, and daytime and nocturnal sleep parameters after the simulated night work were compared between the light conditions using paired t-tests. The ANOVA results indicated a significant interaction (light condition and3 day) (p = .006). Post hoc tests indicated that in the dim-light condition, the melatonin concentration was significantly lower on the second day than on the first day (p = .046); however, in the bright-light condition, there was no significant difference in the melatonin concentration between the days (p = .560). There was a significant difference in ΔDLMO between the conditions (p = .015): DLMO after sleeping was advanced by 11.1 ± 17.4 min under bright-light conditions but delayed for 7.2 ± 13.6 min after sleeping under dim-light conditions. No significant differences were found in any sleep parameter. Our study demonstrated that daytime sleeping under bright-light conditions after night work could not reduce late evening melatonin secretion until midnight or delay the phase of melatonin secretion without decreasing the quality of the daytime sleeping. Thus, these results suggested that, to enhance melatonin secretion and to maintain their conventional sleep–wake cycle, after night work, shift workers should sleep during the daytime under bright-light conditions rather than dim-light conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号