首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Constitutive mutants for dextransucrase were isolated from cells of Leuconostoc mesenteroides NRRL B-512F by treatment with N-methyl-N′-nitro-N-nitrosoguanidine, growing on an agar plate containing glucose as a carbon source and overlaying a soft agar with sucrose and tetracycline. These mutants were able to produce the enzyme in a liquid media containing sugars other than sucrose, such as glucose, fructose and maltose, without simultaneous synthesis of dextran. The enzyme activity of one mutant strain, SH 3002, was 2- to 3-fold higher than that of the wild strain grown on sucrose. When the concentration of glucose in the medium was increased from 2 to 4%, a 1.7-fold increase of enzyme activity was obtained for the mutant, whereas only a slight increase of the activity was observed on sucrose for both the wild strain and the mutant.  相似文献   

2.
A facile purification of Leuconostoc mesenteroides B-512FM dextransucrase   总被引:1,自引:0,他引:1  
Leuconostoc mesenteroides NRRL B-512F has been mutated by treatment with N-nitrosoguanidine. The resulting mutant (designated as B-512FM) produces 300 times as much enzyme as the parent strain. B-512FM dextransucrase was treated extensively with Sigma crude dextranase, followed by column chromatography on Bio-Gel A-5m. The purified dextransucrase had a specific activity of 84 IU/mg, a 100-fold purification with 42% yield, and was shown by SDS-PAGE to have a single protein of molecular weight of 158,000 with dextransucrase activity. The procedure has been used to produce purified enzyme for sequencing. The molecular weight of 158,000 agrees with that calculated from its amino acid sequence.  相似文献   

3.
The acceptor products of maltose with Leuconostoc mesenteroides B-512FM dextransucrase are panose (6(2)-alpha-D-glucopyranosyl maltose) and a homologous series of 6(2)-isomaltodextrinosyl maltoses. The structures of the acceptor products of dextransucrase with other maltodextrins, maltotriose to maltooctaose (G3-G8), were determined by using the known specificities of alpha-glucosidase and porcine pancreatic alpha-amylase, and by methylation analysis. It has been found that dextransucrase transfers a D-glucopyranosyl residue to C-6 of either the nonreducing end or the reducing end residues of the maltodextrins, G3-G8, forming an alpha(1----6) linkage. When a D-glucose was transferred to the nonreducing residue, the first product was also an acceptor to give the second product, which served as an acceptor to give the third product, etc. to give a homologous series. When D-glucose was transferred to the reducing residue, the first product did not readily serve as an acceptor to give products or it served only as a very poor acceptor to give a small amount of the next homologue. The effectiveness of maltodextrins as acceptors decreased as the size of the maltodextrin chain increased. Maltotriose was 40% as effective as maltose and maltooctaose was only 6% as effective.  相似文献   

4.
Astragalin (kaempferol-3-O-β-d-glucopyranoside, Ast) glucosides were synthesized by the acceptor reaction of a dextransucrase produced by Leuconostoc mesenteroides B-512FMCM with astragalin and sucrose. Each glucoside was purified and their structures were assigned as kaempferol-3-O-β-d-glucopyranosyl-(1 → 3)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-nigeroside, Ast-G1′) and kaempferol-3-O-β-d-glucopyranosyl-(1 → 6)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-isomaltoside, Ast-G1) for one glucose transferred, and kaempferol-3-O-β-d-isomaltooligosacharide (Ast-IMO or Ast-Gn; n = 2-8). The astragalin glucosides exhibited 8.3-60.6% higher inhibitory effects on matrix metalloproteinase-1 expression, 18.8-20.3% increased antioxidant effects, and 3.8-18.8% increased inhibition activity of melanin synthesis compared to control (without the addition of compound), depending on the number of glucosyl residues linked to astragalin. These novel compounds could be used to further expand the industrial applications of astragalin glucosides, in particular in the cosmetics industry.  相似文献   

5.
Dextransucrase from Leuconostoc mesenteroides B-512F was immobilized on epoxy-activated acrylic polymers with different textural properties (Eupergit C and Eupergit C 250L). Prior to immobilization, dextransucrase was treated with dextranase to remove the dextran layer covering the enzyme surface, thus increasing the accessibility of its reactive groups to the epoxide centers of the support. Elimination of 99% of the initial carbohydrate content was determined by the anthrone method. To prevent enzyme inactivation, the immobilization was carried out at pH 5.4, at which the coupling to the support took place through the carboxylic groups of the enzyme. The effects of the amount (mg) of dextransucrase added per gram of support (from 0.2:1 to 30:1), temperature and contact time were studied. Maximum activity recovery of 22% was achieved using Eupergit C 250L. Using this macroporous support, the maximum specific activity (710 U/g biocatalyst) was significantly higher than that obtained with the less porous Eupergit C (226 U/g biocatalyst). The dextransucrase immobilized on Eupergit C 250L showed similar optimal temperature (30 degrees C) and pH (5-6) compared with the native enzyme. In contrast, a notable stabilization effect at 30 degrees C was observed as a consequence of immobilization. After a fast partial inactivation, the dextransucrase immobilized on Eupergit C 250L maintained more than 40% of the initial activity over the following 2 days. The features of this immobilized system are very attractive for its application in batch and fixed-bed bioreactors.  相似文献   

6.
7.
The production of dextransucrase fromLeuconostoc mesenteroides NRRL B-512F was stimulated 2-fold by the addition of 0.005% of calcium chloride to the medium; levansucrase levels were unaffected. Dextransucrase was purified by concentration and dialysis of the culture supernatant with a Bio-Fiber 80 miniplant, and by treatment with dextranase followed by chromatography on Bio-Gel A-5m. A 240-fold purification, with a specific activity of 53 U/mg, was obtained. Contaminating enzyme activities of levansucrase, invertase, dextranase, glucosidase, and sucrose phosphorylase were decreased to non-detectable levels. Poly(acrylamide)-gel electrophoresis of the purified enzyme showed only two protein bands, both of which had dextransucrase activity. These bands also gave a carbohydrate stain, indicating that the dextransucrase could be a glycoprotein. Acid hydrolysis, followed by paper chromatography, of the purified enzyme showed that the major carbohydrate was mannose. ConcanavaIin A completely removed dextransucrase activity from solution, confirming the mannoglycoprotein character of the enzyme. Dextransucrase activity was not altered by the addition of 0.008?4 mg/ml of dextran, but its storage stability was increased by the addition of 4 mg/ml of dextran. As previously shown by others, the activity of dextransucrase was decreased by EDTA, and was restored by the addition of calcium ions. Zinc, cadmium, lead, mercury, and copper ions were inhibitory to various degrees.  相似文献   

8.
Zhang H  Hu Y  Zhu C  Zhu B  Wang Y 《Biotechnology letters》2008,30(8):1441-1446
The gene dexYG encoding the dextransucrase from an industrial strain of Leuconostoc mesenteroides 0326 was isolated by PCR. The nucleotide sequence of the dexYG gene consists of an open reading frame (ORF) of 4,584 bp, coding for a 1,527 aa protein with a Mr of 170 kDa. The results were analysed by a BLAST similarity search of the GenBank database, which revealed the amino acid sequence was similiar to dsrD derived from L. mesenteroides Lcc4. The dexYG gene was subcloned into the plasmid pET28a(+) and was expressed in E. coli BL21 (DE3) by IPTG induction. The pH value was one of the main reasons which caused the degradation of enzyme activity in the later stage of induction. The highest activity was reached 36 U/ml after 5 h induction in medium at pH 6.0. Biotransformation yield of the enzyme reached 65% and the molecular weight of transformed dextran was more than 68 kDa in 2 h.  相似文献   

9.
Isomaltooligosaccharide (IMO) is a promising dietary component with prebiotic effect, and the long-chain IMOs are preferred to short chain ones owing to the longer persistence in the colon. To establish the optimal process for synthesis of long-chain IMOs, we systematically examined the reaction condition of dextransucrase of Leuconostoc mesenteroides B-512F by changing the ratio of sucrose to maltose (varying as 1:4, 1:2, 1:1, and 2:1) and amount of each sugar (from 2% to 20%). As a result, a ratio of 2:1 (sucrose to maltose, 10:5% or 20:10%, w/v) was determined as an optimal condition for long-chain IMO synthesis (DP3-DP9) with relatively higher yields (70-90%, respectively).  相似文献   

10.
Recombinant expression of the dextransucrase dsrS gene by Escherichia coli was optimized to produce 5850 U L(-1) (culture) of DSR-S, corresponding to a 30-fold increase compared with previous studies. Rational deletions of the signal peptide, the beginning of the variable region and the last four repeats of the C-terminal end caused no loss of activity. This new variant successfully purified was remarkably stable. With a k(cat) of 584 s(-1), it is the most efficient recombinant glucansucrase described to date. The synthesized polymer possesses more than 95% of alpha-1,6 links, like the dextran produced by the native enzyme, and innovative gel properties were obtained.  相似文献   

11.
A sequence of dextranase treatment, DEAE-cellulose chromatography, affinity chromatography on Sephadex G-200, and chromatography on DEAE-Trisacryl M has been optimized to give a dextransucrase preparation with low carbohydrate content (1-100 micrograms/mg protein) and high specific activity (90-170 U/mg protein) relative to previous procedures, in 30-50% yield. Levansucrase was absent after DEAE-cellulose chromatography, and dextranase was undetectable after Sephadex G-200 chromatography. The method could be scaled up to produce gram quantities of purified enzyme. The purified dextransucrase had a pH optimum of 5.0-5.5, a Km of 12-16 mM, and produced the same lightly branched dextran as before purification. The purified enzyme was not activated by added dextran, but the rate of dextran synthesis increased abruptly during dextran synthesis at a dextran concentration of approximately 0.1 mg/mL. The enzyme had two major forms, of molecular weight 177,000 and 158,000. The 177,000 form predominated in fresh preparations of culture supernatant or purified enzyme, whereas the amount of the 158,000 form increased at the expense of the 177,000 form during storage of either preparation.  相似文献   

12.
Multiple forms of dextransucrase (sucrose:1.6-alpha-D-glucan 6-alpha-D-glucosyltransferae EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F strain were shown by gel filtraton and electrophoretic analyses. Two components of enzyme, having different affinities for dextran gel, were separated by a column of Sephadex G-100. The major component voided from the Sephadex column was treated with dextranase and purified to an electrophoretically homogeneous state. The ]urified enzyme had a molecular weight of 64 000-65 000, pI value of 4.1, and 17% of carbohydrate in a molecule. EDTA showed a characteristic inhibition on the enzyme while stimulative effects were observed by the addition of exogenous dextran to the incubation mixture. The enzyme activity was stimulated by various dextrans and its Km value was decreased with increasing concentration of dextran. The purified enzyme showed no affinity for a Sephadex G-100 gel, and readily aggregated after the preservation at 4 degrees C in a concentrated solution.  相似文献   

13.
After irradiation with photons in the energy range of 70-1000 eV using the synchrotron radiation facility at Pohang, Korea, dextransucrase constitutive and hyper-producing mutants from Leuconostoc mesenteroides were isolated. The mutant (B-512FMCM) produced 13 times higher activity and showed complete constitutivity for dextransucrase production. It synthesized the same dextran as B-512FMC. The dextransucrase of the mutant transferred glucose from dextran to maltose. This novel method is a new technique for the development of industrial microorganisms.  相似文献   

14.
15.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

16.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-α-D-glucan 6-α-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

17.
18.
Leuconostoc mesenteroides B-512 FMC produces dextran and levan using sucrose. Because of the industrial importance of dextrans and oligosaccharides synthesized by dextransucrase (one of glycansucrases from L. mesenteroides), much is known about the dextransucrase, including expression and regulation of gene. However, no detailed report about levansucrase, another industrially important glycansucrase from L. mesenteroides, and its gene was available. In this paper, we report the first-time isolation and molecular characterization of a L. mesenteroides levansucrase gene (m1ft). The gene m1ft is composed of 1272-bp nucleotides and codes for a protein of 424 amino acid residues with calculated molecular mass of 47.1 kDa. The purified protein was estimated to be about 51.7 kDa including a His-tag based on SDS-PAGE. It showed an activity band at 103 kDa on a non-denaturing SDS-PAGE, indicating a dimeric form of the active M1FT. M1FT levan structure was confirmed by NMR and dot blot analysis with an anti-levan-antibody. M1FT converted 150 mM sucrose to levan (18%), 1-kestose (17%), nystose (11%) and 1,1,1-kestopentaose (7%) with the liberation of glucose. The M1FT enzyme produced erlose [O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->2)-beta-D-fructofuranoside] as an acceptor product with maltose. The optimum temperature and pH of this enzyme for levan formation were 30 degrees C and pH 6.2, respectively. M1FT levansucrase activity was completely abolished by 1 mM Hg2+ or Ag2+. The Km and Vmax values for levansucrase were calculated to be 26.6 mM and 126.6 micromol min-1 mg-1.  相似文献   

19.
Kim D  Robyt JF  Lee SY  Lee JH  Kim YM 《Carbohydrate research》2003,338(11):1183-1189
Reactions of Leuconostoc mesenteroides B-512FMCM dextransucrase with increasing concentrations of sucrose, from 0.1 to 4.0 M, gave a decreasing amount of high-molecular weight dextran (HMWD) (>10(6) Da) with a concomitant increase in low-molecular weight dextran (LMWD) (<10(5) Da). At 0.1 M sucrose, pH 5.5, and 28 degrees C, 99.8% of the dextran had a MW>10(6) Da and at 4.0 M sucrose, 69.9% had a MW<10(5) Da and 30.1% had a MW>10(6) Da, giving a bimodal distribution. The degree of branching increased from 5% for 0.1 M sucrose to 16.6% for 4.0 M sucrose. The temperature had very little effect on the size of the dextran, which was >10(6) Da, but it had a significant effect on the degree of branching, which was 4.8% at 4 degrees C and increased to 14.7% at 45 degrees C. Both the molecular weight (MW) and the degree of branching were not significantly affected by different pH values between 4.5 and 6.0.  相似文献   

20.
Dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase, EC 2.4.1.5) (3 IU/ml culture supernatant) was obtained by a modification of the method of Robyt and Walseth (Robyt, J.F. and Walseth, T.F. (1979) Carbohydr. Res. 68, 95-111) from a nitrosoguanidine mutant of Leuconostoc mesenteroides NRRL B-512F selected for high dextransucrase production. Dialyzed, concentrated culture supernatant (crude enzyme) was treated with immobilized dextranase (EC 3.2.1.11) and chromatographed on a column of Bio-Gel A-5m. The resulting, purified enzyme lost activity rapidly at 25 degrees C or on manipulation, as did the crude enzyme when diluted below 1 U/ml. Both enzyme preparations could be stabilized by low levels of high-molecular-weight dextran (2 micrograms/ml), poly(ethylene glycol) (e.g., 10 micrograms/ml PEG 20 000), or nonionic detergents (e.g., 10 micrograms/ml Tween 80). The stabilizing capacity of poly(ethylene glycol) and of dextran increased with molecular weight. Calcium had no stabilizing action in the absence of other additions, but reduced the inactivation that occurred in the presence of 0.5% bovine serum albumin or high concentrations (greater than 0.1%) of Triton X-100. In summary, dextransucrase could be stabilized against activity losses caused by heating or by dilution through the addition of low concentrations of nonionic polymers (dextran, PEG 20000, methyl cellulose) or of nonionic detergents at or slightly below their critical micelle concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号