首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The main physicochemical characteristics of the major isoform of the laccase secreted by the fungu, Trametes hirsuta 072 were studied. The enzyme belongs to the group of high redox potential laccases (E(T1) = 790 +/- 5), and it oxidizes with high efficiency various substrates of phenolic nature. The gene of this isoform was cloned, and its nucleotide sequence was determined. The length of the complete gene is 2134 bp. It comprises 11 exons and 10 introns. Analysis of the amino acid sequence of T. hirsuta 072 laccase demonstrated a high homology (to 96.9%) to the other laccases secreted by fungi of the genus Trametes.  相似文献   

2.
A heterologous protein expression in the fungus Penicillium canescens is described for the first time. The fungal strains producing Trametes hirsuta 072 accase under control of a highly efficient promoter of the P. canescens gene bgaS has been constructed. These strains efficiently transcribe the T. hirsuta 072 laccase gene with a correct intron splicing. Activity of the secreted heterologous laccase in the culture liquid reaches 3 U/ml, accounting for 98% of the total laccase activity, which demonstrates a high efficiency of heterologous secretion. The synthesized P. canescens laccase has the same molecular weight as the enzyme produced by T. hirsuta 072.  相似文献   

3.
The principal possibility of enzymatic oxidation of manganese ions by fungal Trametes hirsuta laccase in the presence of oxalate and tartrate ions, whereas not for plant Rhus vernicifera laccase, was demonstrated. Detailed kinetic studies of the oxidation of different enzyme substrates along with oxygen reduction by the enzymes show that in air-saturated solutions the rate of oxygen reduction by the T2/T3 cluster of laccases is fast enough not to be a readily noticeable contribution to the overall turnover rate. Indeed, the limiting step of the oxidation of high-redox potential compounds, such as chelated manganese ions, is the electron transfer from the electron donor to the T1 site of the fungal laccase.  相似文献   

4.
The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI→LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (khet for LCCIa = 1.3 × 10−4 cm s−1). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.  相似文献   

5.
6.
The litter-degrading dung fungus Coprinopsis cinerea has the high number of seventeen different laccase genes. In this work, ten different monokaryons were compared in their ability to produce laccases in two different complete media at different temperatures. Few strains showed laccase activity at the optimal growth temperature of 37 °C. Nine of the strains gave laccase activities between 0.2 and 5.9 U mL?1 at the suboptimal temperature of 25 °C in mKjalke medium. Laccase activities in YMG/T medium were detected for only three strains (0.5–4.5 U mL?1). Zymograms of supernatants from mKjalke medium resulted in total in 10 different laccase bands but strains differed in distribution. LC–MS/MS analysis with Mascot searches of the annotated C. cinerea genome identified isoenzymes from five different genes (Lcc1, Lcc2, Lcc5, Lcc9 and Lcc10) and of Lcc1 three and of Lcc5 two distinct electrophoretical forms. Lcc1 and Lcc5 were expressed in all laccase positive strains, but not all forms were found in all of the strains. Lcc2, Lcc9 and Lcc10 occurred only in three strains as minor laccases, indicating that Lcc1 and Lcc5 are the main laccases of C. cinerea secreted in liquid mKjalke medium.  相似文献   

7.
A modified thermal asymmetric interlaced polymerase chain reaction was performed to obtain the first yeast laccase gene (YlLac) from the isolated yeast Yarrowia lipolytica. The 1557-bp full-length cDNA of YlLac encoded a mature laccase protein containing 519 amino acids preceded by a signal peptide of 19 amino acids, and the YlLac gene was expressed in the yeast Pichia pastoris. YlLac is a monomeric glycoprotein with a molecular mass of ~55 kDa as determined by polyacrylamide-gel electrophoresis. It showed a higher catalytic efficiency towards 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (kcat/Km = 17.5 s-1 μM-1) and 2,6-dimethoxyphenol (kcat/Km = 16.1 s-1 μM-1) than other reported laccases. The standard redox potential of the T1 site of the enzyme was found to be 772 mV. The highest catalytic efficiency of the yeast recombinant laccase, YlLac, makes it a good candidate for industrial applications: it removes phenolic compounds in acid-pretreated woody biomass (Populus balsamifera) and enhanced saccharification.  相似文献   

8.
Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L−1 of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low KM values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I50 = 1.4 M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research.  相似文献   

9.
Compatibility of Trametes versicolor and Trametes hirsuta laccases was studied with polymers used for flexographic inks. The aim was to produce bioactive paper with ability to change color. Optimum pH for the stability of Trametes versicolor and Trametes hirsuta laccases was determined during storage at room temperature for 60 days. The optimum pH for the stability of both laccases was 8–9. The stabilization effect of flexo printing inks on the enzymes was tested in liquid form and when coated on paper. Sulfo polyester resin HZ1100D stabilized the two laccases both in solution and on paper. For example, Trametes versicolor laccase remained stable for at least 8 weeks when coated with HZ1100D polymer. Furthermore, the adsorption of the flexo inks to cellulose was studied with quartz crystal microbalance with dissipation monitoring (QCM-D). It was observed that HZ1100D also adsorbs well on cellulose over a wide pH range. The results suggested that laccases are well suited to bioactive paper applications. Large scale manufacturing of bioactive paper products by flexo printing would be possible because of the compatibility of laccases with flexo inks.  相似文献   

10.
Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC50) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (ΔE*) below 1.1 were measured for most dyes.  相似文献   

11.
In this study crude laccases from the white‐rot fungi Cerrena unicolor and Trametes hirsuta were tested for their ability to decolorize simulated textile dye baths. The dyes used were Remazol Brilliant Blue R (RBBR) (100 mg/L), Congo Red (12.5 mg/L), Lanaset Grey (75 mg/L) and Poly R‐478 (50 mg/L). The effect of redox mediators on dye decolorization by laccases was also assessed. C. unicolor laccase was able to decolorize all the dyes tested. It was especially effective towards Congo Red and RBBR with 91 and 80% of color removal in 19.5 h despite the fact that simulated textile dye baths were used. Also Poly R‐478 and Lanaset Grey were partially decolorized (69 and 48%, respectively). C. unicolor laccase did not need any mediators for removing the dyes. However, T. hirsuta laccase was only able to decolorize simulated Congo Red and RBBR dye baths (91 and 45%, respectively) in 19.5 h without mediators. When using mediators the decolorization capability was enhanced substantially, e.g. Poly R‐478 was decolorized by 78% in 25.5 h. On the whole, both laccases showed potential to be used in industrial applications.  相似文献   

12.
The laccases (EC 1.10.3.2) secreted into solid-state culture by Lentinula edodes were analyzed. The fungus secreted at least two laccases in the solid-state culture. One laccase was purified to a homogeneous preparation using anion-exchange, hydrophobic, and size-exclusion chromatography. SDS-PAGE analysis showed that the purified laccase, Lcc6, was a monomeric protein of 58.5 kDa. The optimum pH for enzyme activity was about 3.5, and the laccase was most active at 40°C. The N-terminal amino acid sequence of Lcc6 did not correspond to the sequence of Lcc1, which was previously purified from L. edodes. Lcc6 had decolorization activity to some chemical dyes.  相似文献   

13.
Studies of laccases from marine-derived fungi are limited. In the present work, putative laccase genes from three marine-derived basidiomycetes and their laccase activities were evaluated. High amounts of laccase were produced by the fungal strains Marasmiellus sp. CBMAI 1062 (971.2 U L−1) and Peniophora sp. CBMAI 1063 (709.03 U L−1) when grown for 21 d at 28 °C in MA2ASW medium prepared with artificial seawater. Marine-derived basidiomycetes produced multiple distinct laccase sequences of about 200 bp with 73–90 % similarity to terrestrial basidiomycete laccases. Marasmiellus sp. CBMAI 1062 and Tinctoporellus sp. CBMAI 1061 showed the greatest laccase gene diversity with three and four distinct putative laccase sequences, respectively. This is the first report of laccase genes from marine-derived fungi, and our results revealed new putative laccases produced by three basidiomycetes.  相似文献   

14.
A second laccase gene, CVLG1, was isolated from Coriolus versicolor. CVLG1 encodes a precursor protein of 526 amino acids which contains a 23-amino acid signal sequence, and the coding region is interrupted by 11 introns. The number of potential N-glycosylation sites in this product is 12 and the greatest among that of polyporales laccases. Moreover, this protein shares about 70% homology with other polyporales laccases. Genomic Southern analysis showed that C. versicolor laccases are encoded by more than four genes including CVLG1 and a transposed allele of this gene.  相似文献   

15.
The lac1 gene encoding an extracellular laccase was isolated from the thermophilic fungus Melanocarpus albomyces. This gene has five introns, and it encodes a protein consisting of 623 amino acids. The deduced amino acid sequence of the laccase was shown to have high homology with laccases from other ascomycetes. In addition to removal of a putative 22-amino-acid signal sequence and a 28-residue propeptide, maturation of the translation product of lac1 was shown to involve cleavage of a C-terminal 14-amino-acid extension. M. albomyces lac1 cDNA was expressed in Saccharomyces cerevisiae under the inducible GAL1 promoter. Extremely low production was obtained with the expression construct containing laccase cDNA with its own signal and propeptide sequences. The activity levels were significantly improved by replacing these sequences with the prepro sequence of the S. cerevisiae α-factor gene. The role of the C-terminal extension in laccase production in S. cerevisiae was also studied. Laccase production was increased sixfold with the modified cDNA that had a stop codon after the native processing site at the C terminus.  相似文献   

16.
A cDNA encoding a novel laccase from the white-rot fungus Trametes trogii was cloned and expressed in Pichia pastoris. The recombinant protein (Lcc2) exhibited kinetic parameters for both phenolic and non phenolic substrates that were different from the previously described Lcc1, the main laccase isoform expressed by T. trogii; in addition, the pH/activity profiles for phenolic substrates of Lcc2 were shifted upward by 1–1.5 pH units towards neutrality as compared to Lcc1. Comparative modeling of the two laccases (69.2% identity) showed that the overall fold of Lcc2 is very similar to Lcc1 and other laccases. The substrate cavity of Lcc2 contains the Asp residue which is thought to mediate the laccase activity at acidic pHs, whereas two hydrophobic residues (Phe, Ile) on the cavity orifice of Lcc2 replace the two polar residues (Thr, Ser) of Lcc1. These structural differences may be responsible for the unique kinetic performances of Lcc2.  相似文献   

17.
Cerrena unicolor secreted two laccase isoforms with different characteristics during the growth in liquid media. In a synthetic low-nutrient nitrogen glucose medium (Kirk medium), high amounts of laccase (4,000 U l−1) were produced in response to Cu2+. Highest laccase levels (19,000 U l−1) were obtained in a complex tomato juice medium. The isoforms (Lacc I, Lacc II) were purified to homogeneity with an overall yield of 22%. Purification involved ultrafiltration and Mono Q separation. Lacc I and II had M w of 64 and 57 kDa and pI of 3.6 and 3.7, respectively. Both isoforms had an absorption maximum at 608 nm but different pH optima and thermal stability. Optimum pH ranged from 2.5 to 5.5 depending on the substrate. The pH optima of Lacc II were always higher than those of Lacc I. Both laccases were stable at pH 7 and 10 but rapidly lost activity at pH 3. Their temperature optimum was around 60°C, and at 5°C they still reached 30% of the maximum activity. Lacc II was the more thermostable isoform that did not lose any activity during 6 months storage at 4°C. Kinetic constants (K m, k cat) were determined for 2,2′-azino-bis(3-ethylthiazoline-6-sulfonate) (ABTS), 2,6-dimethoxyphenol and syringaldazine.  相似文献   

18.
Laccases are copper-containing enzymes which oxidize phenolic substrates and transfer the electrons to oxygen. Many filamentous fungi contain several laccase-encoding genes, but their biological roles are mostly not well understood. The main interest in laccases in biotechnology is their potential to be used to detoxify phenolic substances. We report here on a novel application of laccases as a reporter system in fungi. We purified a laccase enzyme from the ligno-cellulolytic ascomycete Stachybotrys chartarum. It oxidized the artificial substrate 2,2′-azino-di-(3-ethylbenzthiazolinsulfonate) (ABTS). The corresponding gene was isolated and expressed in Aspergillus nidulans, Aspergillus niger, and Trichoderma reesei. Heterologously expressed laccase activity was monitored in colorimetric enzyme assays and on agar plates with ABTS as a substrate. The use of laccase as a reporter was shown in a genetic screen for the isolation of improved T. reesei cellulase production strains. In addition to the laccase from S. charatarum, we tested the application of three laccases from A. nidulans (LccB, LccC, and LccD) as reporters. Whereas LccC oxidized ABTS (Km= 0.3 mM), LccD did not react with ABTS but with DMA/ADBP (3,5-dimethylaniline/4-amino-2,6-dibromophenol). LccB reacted with DMA/ADBP and showed weak activity with ABTS. The different catalytic properties of LccC and LccD allow simultaneous use of these two laccases as reporters in one fungal strain.  相似文献   

19.
Previous work has shown that the white rot fungus Coriolopsis rigida degraded wheat straw lignin and both the aliphatic and aromatic fractions of crude oil from contaminated soils. To better understand these processes, we studied the enzymatic composition of the ligninolytic system of this fungus. Since laccase was the sole ligninolytic enzyme found, we paid attention to the oxidative capabilities of this enzyme that would allow its participation in the mentioned degradative processes. We purified two laccase isoenzymes to electrophoretic homogeneity from copper-induced cultures. Both enzymes are monomeric proteins, with the same molecular mass (66 kDa), isoelectric point (3.9), N-linked carbohydrate content (9%), pH optima of 3.0 on 2,6-dimethoxyphenol (DMP) and 2.5 on 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), absorption spectrum, and N-terminal amino acid sequence. They oxidized 4-anisidine and numerous phenolic compounds, including methoxyphenols, hydroquinones, and lignin-derived aldehydes and acids. Phenol red, an unusual substrate of laccase due to its high redox potential, was also oxidized. The highest enzyme affinity and efficiency were obtained with ABTS and, among phenolic compounds, with 2,6-dimethoxyhydroquinone (DBQH2). The presence of ABTS in the laccase reaction expanded the substrate range of C. rigida laccases to nonphenolic compounds and that of MBQH2 extended the reactions catalyzed by these enzymes to the production of H2O2, the oxidation of Mn2+, the reduction of Fe3+, and the generation of hydroxyl radicals. These results confirm the participation of laccase in the production of oxygen free radicals, suggesting novel uses of this enzyme in degradative processes.  相似文献   

20.
A novel laccase was purified and characterized from an edible mushroom Russula virescens by using a protocol that comprised ammonium sulfate saturation, ion-exchange chromatography on diethylaminoethyl-cellulose, carboxymethyl-cellulose and quaternary amine-Sepharose, and finally gel filtration by fast protein liquid chromatography on Superdex 75. The laccase was a monomeric protein with a molecular mass of 69 kDa. Its N-terminal amino acid sequence was AIGPTAELVV which demonstrated partial sequence homology to those of previously published laccases. Six peptide sequences of the purified laccase were determined by liquid chromatography and linear ion trap quadrupole mass spectrometry. Its optimum pH and temperature were 2.2 and 60 °C, respectively. The laccase was inhibited by inhibitors and several metal ions including Cu2+ ions. The laccase degraded various phenolic compounds and the Km toward both 2,7-azinobis (3-ethylbenzothia-zolone-6-sulfonic acid) diammonium salt and dimethylphthalate was 0.1 mM. Moreover, the purified laccase decolorizes a large variety of dyes comprising laboratory dyes such as Bromothymol Blue, Eriochrome black T and Malachite Green and textile dyes such as Reactive Brilliant Blue and Reactive Blue R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号