首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined 1) the effect of L-carnitine supplementation on free fatty acid (FFA) utilization during exercise and 2) exercise-induced alterations in plasma levels and skeletal muscle exchange of carnitine. Seven moderately trained human male subjects serving as their own controls participated in two bicycle exercise sessions (120 min, 50% of VO2max). The second exercise was preceded by 5 days of oral carnitine supplementation (CS; 5 g daily). Despite a doubling of plasma carnitine levels, with CS, there were no effects on exercise-induced changes in arterial levels and turnover of FFA, the relation between leg FFA inflow and FFA uptake, or the leg exchange of other substrates. Heart rate during exercise after CS decreased 7-8%, but O2 uptake was unchanged. Exercise before CS induced a fall from 33.4 +/- 1.6 to 30.8 +/- 1.0 (SE) mumol/l in free plasma carnitine despite a release (2.5 +/- 0.9 mumol/min) from the leg. Simultaneously, acylated plasma carnitine rose from 5.0 +/- 1.0 to 14.2 +/- 1.4 mumol/l, with no evidence of leg release. Consequently, total plasma carnitine increased. We concluded that in healthy subjects CS does not influence muscle substrate utilization either at rest or during prolonged exercise and that free carnitine released from muscle during exercise is presumably acylated in the liver and released to plasma.  相似文献   

2.
The effect of very long endurance exercise on muscle carnitine was studied. Eighteen cross-country skiers took part in a race in the Alps (average inspired partial pressure of O2 100-110 Torr) that lasted on average 13 h 26 min. Carnitine intake, evaluated for 2 wk before the event, was 50 +/- 4 (SE) mg/day. Muscle (vastus lateralis) total carnitine concentration, measured twice with a 2-yr interval on eight rested subjects, did not change with time (17 vs. 16 mumol/g dry wt, NS) but showed consistent interindividual differences (range 12-22, P = 0.001) with no correlation with intake. After exercise, total muscle carnitine was unaltered (from 17.9 +/- 1.0 at rest to 18.3 +/- 0.8 mumol/g dry wt postexercise in the 15 subjects who completed the race, NS), but muscle free carnitine decreased 20% (from 14.9 +/- 0.8 mumol/g, P = 0.01) and short-chain acylcarnitine increased 108% (from 3.5 +/- 0.4 mumol/g, P = 0.01). These results suggest that carnitine deficiency will probably not result from strenuous aerobic exercise in trained subjects who consume a moderate amount of carnitine in their food.  相似文献   

3.
The purpose of this investigation was to describe the dynamics of carnitine metabolism during an acute episode of exercise. Twenty-eight subjects (14 male; 14 female) exercised for 40 min on a bicycle ergometer at 55% of their maximal aerobic capacities. Blood samples were obtained at rest, 10, 20, 30, and 40 min of exercise, and 15-min postexercise. Muscle biopsies of the vastus lateralis were performed before and after exercise. Results demonstrated that the percent of acylated plasma carnitine increased significantly (P less than 0.05) across all subjects from 17.3% at rest to 22.3% by 40 min of exercise and continued to increase to 22.8% 15-min postexercise. Total muscle carnitine levels fell significantly (P less than 0.001) across all subjects from 4.21 (1.27) (means +/- SD) mumol/g wet weight at rest to 3.29 (1.27) mumol/g wet weight after exercise. Well-trained males and females had almost identical levels of muscle carnitine [4.35(1.86) and 4.34 (0.64) mumol/g wet weight, respectively]. These levels were somewhat higher but not significantly higher than their moderately trained counterparts [3.86(1.34) and 4.28(1.18) males and females, respectively]. Carnitine palmitoyl transferase (E.C. 2.3.1.21) activity also declined significantly (P less than 0.05) across all subjects after exercise. This study is the first to demonstrate a potential loss of acylated carnitine forms from muscle to plasma during acute exercise, possibly reflecting an increase in carnitine turnover. Alterations in carnitine status may represent another metabolic adaptation to chronic exercise training.  相似文献   

4.
Maintaining hyperinsulinemia ( approximately 160 mU/l) during steady-state hypercarnitinemia ( approximately 550 mumol/l) increases skeletal muscle total carnitine (TC) content by approximately 15% within 5 h. The aim of the present study was to further examine the relationship between serum insulin concentration and skeletal muscle carnitine accumulation by attempting to identify the serum insulin concentration at which this stimulatory effect of insulin on carnitine retention becomes apparent. On four randomized experimental visits, eight healthy men (body mass index 23.8 +/- 0.9 kg/m(2)) underwent a 6-h euglycemic insulin clamp of 5, 30, 55, or 105 mU x m(-2) x min(-1) accompanied by a 5-h iv infusion of l-carnitine (15 mg/kg bolus followed by 10 mg x kg(-1) x h(-1)). The clamps produced steady-state serum insulin concentrations of 10.1 +/- 0.5, 48.8 +/- 1.0, 88.9 +/- 2.8, and 173.9 +/- 6.5 mU/l, respectively. During l-carnitine infusion, plasma TC concentration remained above 450 mumol/l during all four visits. However, there was a significant treatment effect of insulin (P < 0.001), such that by the end of infusion the plasma TC concentration in the 55- and 105-mU clamps was lower than that seen in the 5- (P < 0.05 and P < 0.01, respectively) and 30-mU (P < 0.01) clamps. The findings demonstrate that only high circulating serum insulin concentrations (> or =90 mU/l) are capable of stimulating skeletal muscle carnitine accumulation. This is of relevance to athletes, and the treatment of obesity and type 2 diabetes, where increasing skeletal muscle carnitine content may be used as tool to modify skeletal muscle energy metabolism.  相似文献   

5.
A Stahl  A Frick  M Imler  J L Schlienger 《Enzyme》1979,24(5):294-301
Plasma L-alanine is deaminated by bacterial alanine-dehydrogenase; the resulting ammonia is dialyzed out and measured by use of a continuous flow phenol-hypochlorite colorimetric microassay. Concentrations in the range of 10-1,000 mumol alanine/l can be determined in a 50-microliter sample. The optimal conditions for the assay are specified. Study of the analytical qualities of the technique shows high specificity, good reproducibility , and a detection limit of 6 mumol/l. Usual values in human plasma from arterial or venous blood are respectively 296 +/- 166 and 376 +/- 214 mumol alanine/l (x +/- 2 SD). The usual values in rats are close to those found in man.  相似文献   

6.
Mechanistic details of mammalian metabolism in vivo and dynamic metabolic changes in intact organisms are difficult to monitor because of the lack of spatial, chemical, or temporal resolution when applying traditional analytical tools. These limitations can be addressed by sensitivity enhancement technology for fast in vivo NMR assays of enzymatic fluxes in tissues of interest. We apply this methodology to characterize organ-specific short chain fatty acid metabolism and the changes of carnitine and coenzyme A pools in ischemia reperfusion. This is achieved by assaying acetyl-CoA synthetase and acetyl-carnitine transferase catalyzed transformations in vivo. The fast and predominant flux of acetate and propionate signal into acyl-carnitine pools shows the efficient buffering of free CoA levels. Sizeable acetyl-carnitine formation from exogenous acetate is even found in liver, where acetyl-CoA synthetase and acetyl-carnitine transferase activities have been assumed sequestered in different compartments. In vivo assays of altered acetate metabolism were applied to characterize pathological changes of acetate metabolism upon ischemia. Coenzyme pools in ischemic skeletal muscle are reduced in vivo even 1 h after disturbing muscle perfusion. Impaired mitochondrial metabolism and slow restoration of free CoA are corroborated by assays employing fumarate to show persistently reduced tricarboxylic acid (TCA) cycle activity upon ischemia. In the same animal model, anaerobic metabolism of pyruvate and tissue perfusion normalize faster than mitochondrial bioenergetics.  相似文献   

7.
1. L-carnitine was administered orally to thoroughbred horses for 58 days. 2. Acceptability and effects on plasma, muscle and urine concentration were studied. 3. Ten-60 g/day (as 2-3 doses) was acceptable with no deleterious effects. 4. One x 10 g L-carnitine significantly raised the plasma-free carnitine concentration (7 hr post) from 21.2 to 31.8 mumol/l; 2 x 30 g increased the mean to 36.5 mumol/l. 5. Plasma acetylcarnitine increased from approximately 1 to 5.5 mumol/l (7 hr post) on 2 x 30 g/day. 6. Muscle total carnitine was unchanged over 58 days. 7. Urinary output accounted for 3.5-7.5% of added carnitine, indicating low intestinal absorption.  相似文献   

8.
G A Pearce  K F Brown 《Life sciences》1983,33(15):1457-1466
Protein binding determination in post heparin plasma samples is complicated by the continued post heparin lipase activity, in vitro, during the binding analysis. The decomposition of lipoproteins and accumulation of nonesterified fatty acids (NEFA) results in artifically elevated free fractions of many drugs. This artefact is particularly accentuated in haemodialysis patients who are frequently hypertriglyceridaemic and receive large doses of heparin. Rapid heat treatment (60 degrees for 15 min) of plasma from heparinized uraemic subjects is shown to inhibit the in vitro lipolysis occurring during 2 hours of equilibrium dialysis at 37 degrees (ED). Mean NEFA concentrations in heat treated plasma after ED (means = 400 +/- 141 mumol/L) were not different (p greater than 0.05, n = 9) from the baseline values in fresh plasma (means 351 +/- 117 mumol/L) but were considerably less (p less than 0.005) than NEFA levels in untreated plasma after ED (means = 1025 +/- 523 mumol/L). The degree of in vitro lipolysis inhibition (92 +/- 6.6%) was very much greater than using the chemical inhibitors phenyl methyl sulphonyl fluoride, EDTA, Triton X100 or protamine sulphate. Heat treatment at 60 degrees for 15 min increased the percentage of free 14C ibuprofen in 3.5% isolated human serum albumin from 0.34% to 0.62%. Reduced binding as a result of heat treatment was not observed however in whole plasma. The percentage free ibuprofen in heat treated, whole plasma from both heparinized and non heparinized subjects (means = 1.22 +/- 0.19; n = 29) was not different (p greater than 0.05) from the percentage free determined in plasma from a non heparinized group (means = 1.16 +/- 0.23; n = 15). In contrast the % free ibuprofen in untreated plasma from heparinized subjects was markedly higher (means = 1.56 +/- 0.41; n = 24; p less than 0.05). There was a strong correlation between % free ibuprofen and plasma NEFA concentration (r = 0.8; p less than 0.005; n = 68). The heat treatment of plasma for 15 min at 60 degrees is proposed as an effective means of controlling heparin induced lipolysis in vitro and may be valuable in overcoming the post heparin binding artefact.  相似文献   

9.
We describe a method for the measurement of plasma dehydroepiandrosterone sulphate (DHAS) which incorporates a Triton X-100 solubilised preparation of human placental steroid sulphatase as a hydrolysing agent and a direct radioimmunoassay of liberated DHA using a specific antiserum. The hydrolysis procedure is carried out at 50 degrees C for 1 h and an assay run can be completed in 4 h. As determined by the method, plasma concentrations of DHAS in 32 normal adult men (ages 23-58 yr) had a mean value +/- SD of 5.5 +/- 1.89 mumol/l. For 30 normal adult cyclic women (ages 22-35 yr) the mean plasma concentration of DHAS +/- SD was 3.1 +/- 1.35 mumol/l which was significantly lower (P less than 0.01) than found for men. Plasma DHAS concentration were also measured in 50 hirsute female patients. The mean value +/- SD was 5.03 +/- 2.52 mumol/l which was significantly higher (P less than 0.01) than the value for the normal female group. Some 42% of the hirsute patients had DHAS concentrations above the upper 95% probability limit of the normal range for premenopausal women.  相似文献   

10.
An Na+-stimulated Mg2+-transport system in human red blood cells   总被引:5,自引:0,他引:5  
The initial rate of net Mg2+ efflux was measured in human red blood cells by atomic absorption. In fresh erythrocytes incubated in Na+,K+-Ringer's medium this rate was 7.3 +/- 2.8 mumol/l cells per h (mean +/- S.D. of 14 subjects) with an energy of activation of 13 200 cal/mol. Cells with total Mg2+ contents ([ Mg]i) ranging from 1.8 to 24 mmol/l cells were prepared by using a modified p-chloromercuribenzenesulphonate method. Mg2+ efflux was strongly stimulated by increases in [Mg]i and in external Na+ concentrations ([ Na]o). A kinetic analysis of Mg2+ efflux as a function of [Mg]i and [Na]o revealed the existence of two components: an Na+-stimulated Mg2+ efflux, which exhibited a Michaelian-like dependence of free internal Mg2+ content (apparent dissociation constant = 2.6 +/- 1.4 mmol/l cells; mean +/- S.D. of six subjects) and on external Na+ concentration (apparent dissociation constant = 20.5 +/- 1.9 mM; mean +/- S.D. of four subjects) and a variable maximal rate ranging from 35 to 370 mumol/l cells per h, and an Na+-independent Mg2+ efflux, which showed a linear dependence on internal Mg2+ content with a rate constant of (6.6 +/- 0.7) X 10(-3) h-1. Fluxes catalyzed by the Na+-stimulated Mg2+ carrier were partially dependent on the ATP content of the cells and completely inhibited by quinidine (IC50 = 50 microM) and by Mn2+ (IC50 = 0.5-1.0 mM).  相似文献   

11.
Carnitine is required for the transport of activated long chain fatty acids through the mitochondrial inner membrane. We measured the intracellular free calcium concentration [( Ca2+]i) by means of a calcium selective microelectrode in skeletal muscle biopsies obtained from nine patients in which myopathic carnitine deficiency (MCD) was diagnosed, and from six subjects with no evidence of neuromuscular disease. Intact intercostal muscle bundles were dissected and then split for electron microscopic studies and electrophysiological measurements. The [Ca2+]i in muscle fibers from MCD patients was 0.46 +/- 0.02 mumol.l-1 (mean +/- SEM) and 0.10 +/- 0.01 mumol.l-1 in control subjects. At the electron microscopic level, the predominant abnormality was the presence of lipid vacuoles between the myofibrils. These results show that in patients with myopathic carnitine deficiency there is a significant increase in the resting myoplasmic calcium concentration which might be related to a malfunction of some mechanisms responsible for the homeostasis of intracellular calcium.  相似文献   

12.
The plasma concentrations of carnitine were determined in a group of 35 women and 35 men admitted to a clinic, and in another group of 18 women during their menstrual cycle. The values found for the women (45.1 +/- 2.6 nmol/ml of free carnitine and 59.1 +/- 2.8 nmol/ml of total carnitine) were not significantly different from the values obtained in men (respectively 42.4 +/- 1.7 and 55.5 +/- 1.9 nmol/ml). No direct relationship between the free or total carnitine concentrations and the concentrations of circulating lipids could be demonstrated. During the menstrual cycle the plasma concentrations of free and total carnitine remained unchanged. Intake of oral contraceptives caused an elevation in blood triacylglycerols and decreases in the levels of luteinizing hormone, follicle-stimulating hormone, and free and total carnitine.  相似文献   

13.
Hormonal, metabolic, and cardiovascular responses to 21 min of cycling in three saline- or glucose-infused men with McArdle's disease were compared with those of matched controls to elucidate whether mobilization of extramuscular fuel is enhanced to compensate for the lack of intramuscular glycogenolysis in patients with McArdle's disease. During exercise, all saline-infused patients compared with controls working at both the same absolute and at similar relative work rates had higher glucose production (31 +/- 7 vs. 19 +/- 5 and 26 +/- 4 mumol.min-1.kg-1) and utilization (34 +/- 8 vs. 22 +/- 2 and 28 +/- 4 mumol.min-1.kg-1); higher plasma glycerol (155 +/- 19 vs. 75 +/- 20 and 90 +/- 22 mumol/l), free fatty acids (487 +/- 175 vs. 295 +/- 47 and 202 +/- 52 mumol/l), growth hormone (7.7 +/- 2.8 vs. 2.6 +/- 1.1 and 3.6 +/- 3.4 mU/l), and cortisol (530 +/- 168 vs. 268 +/- 8 and 367 +/- 80 nmol/l), greater decrease in insulin (delta 57 +/- 4 vs. delta 11 +/- 8 and delta 11 +/- 23 pmol/l), and similar glucose concentrations. Furthermore, norepinephrine, epinephrine, and adrenocorticotropic hormone levels were higher and heart rate and cardiac output were higher during exercise in all patients than in controls at the same absolute work rate. Glucose infusion induced hyperglycemia and hyperinsulinemia in patients and inhibited the exercise-induced increases in glucose production, glycerol, free fatty acids, catecholamines, growth hormone, cortisol, and heart rate. In conclusion, feedback from metabolism in contracting muscle enhances hormonal responses and extramuscular substrate mobilization during exercise in McArdle's disease.  相似文献   

14.
The effect of hyperammonemia on plasma and urinary levels of carnitine was studied in different groups of +/Y (normal) and spf/Y (chronically hyperammonemic) mice. Experimental models of acute and subacute hyperammonemia were prepared in +/Y and spf/Y mice by the use of ammonium acetate ip injections and arginine-free diets, respectively. In acute hyperammonemia, the plasma levels of both free and acylcarnitines increased significantly whereas acyl/free carnitine ratio was decreased, indicating a mobilization of carnitine from the storage sites. The subacute hyperammonemia model showed the same tendency in respect of plasma and urinary carnitines; however, the values in plasma were more significantly different. The effect of sodium benzoate on plasma carnitine levels, during both an acute and a prolonged treatment, consisted in a significant lowering of free carnitine and a significant increase in the acyl/free carnitine ratio, in both +/Y normal and spf/Y mouse models. The changes in the urinary profile, on benzoate treatments, were not significant. These results demonstrate the individual effects of hyperammonemia and benzoate therapy on carnitine metabolism, which may be helpful in understanding and ameliorating the therapeutic approach to hereditary hyperammonemias.  相似文献   

15.
Sixteen newly diagnosed non insulin dependent diabetic patients were treated for 3 months with an individual energy restricted diet. The effect on weight, hyperglycaemia and insulin response to oral glucose was measured in all subjects, and in 7, peripheral insulin resistance was estimated using a hyperinsulinaemic glucose clamp at two insulin infusion rates (40 and 400 mU m-2 X min-1). After diet, fasting plasma glucose fell from 12.0 +/- 0.7 mmol/l (mean +/- SEM) to 7.4 +/- 0.5 mmol/l (P less than 0.001) and weight fell from 92.9 +/- 4.2 kg to 85.0 +/- 3.1 kg (P less than 0.001). The plasma insulin response to oral glucose was unchanged after diet therapy. Insulin induced glucose disposal (M) was also unaffected by diet at insulin infusion rates of 40 mU m-2 X min-1 (12.5 +/- 1.5 mumol X kg-1 X min-1 vs 15.7 +/- 1.6 mumol X kg-1 X min-1) and 400 mU m-2 X min-1 (49.5 +/- 2.7 mumol X kg-1 X min-1 vs 55.1 +/- 2.5 mumol X kg-1 X min-1). These results show that 3 months reduction of energy consumption with weight loss in newly diagnosed non insulin dependent diabetics improves B-cell responsiveness to glucose but has no effect on liver glucose output or on peripheral insulin action.  相似文献   

16.
Free fatty acid availability and temperature regulation in cold water   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate whether a reduced availability of plasma free fatty acids (FFA) would impair human temperature regulation during cold exposure. Seven seminude male subjects were immersed on two occasions in 18 degrees C water for 90 min or until their rectal temperature (Tre) decreased to 35.5 degrees C. The immersion occurred after 2 h of intermittent oral ingestion of either nicotinic acid (NIC) or a placebo (PLAC). Plasma FFA levels immediately before the immersion were significantly lower in NIC (87 +/- 15 mumol/l) than in PLAC (655 +/- 116 mumol/l, P less than 0.05). Although FFA levels increased by 73% in NIC during the immersion (P less than 0.05), they remained significantly lower than in PLAC (151 +/- 19 vs. 716 +/- 74 mumol/l, P less than 0.05) throughout the immersion. Muscle glycogen concentrations in the vastus lateralis decreased after cold water immersion in both trials (P less than 0.05), but the rate of glycogen utilization was similar, averaging 1.00 +/- 0.27 mmol glucose unit.kg dry muscle-1.min-1). Plasma glucose levels were significantly reduced after immersion in both trials (P less than 0.05), this decrease being greater in NIC (1.3 +/- 0.2 mmol/l) than in PLAC (0.7 +/- 0.1 mmol/l, P less than 0.05). O2 uptake increased to 3.8 +/- 0.3 times preimmersion values in both trials (P less than 0.05). Mean respiratory exchange ratio (RER) immediately before the immersion was greater in NIC (0.87 +/- 0.02) than in PLAC (0.77 +/- 0.01, P less than 0.05). Cold exposure increased RER in PLAC but not in NIC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A stable isotope dilution gas chromatography-mass spectrometry (GC-MS) assay for the trace level determination of estriol in human plasma is described. Negative ion chemical ionization (NICI) MS is used for highly specific detection. The method involves derivatization of the phenolic hydroxyl to the pentafluorobenzyl ether derivative and subsequent reaction of the remaining hydroxyls with heptafluorobutyric anhydride. This derivative allows detection of the strikingly abundant phenolate ion under NICI conditions. [2,4,17beta]-2H(3)-labeled estriol was used as an internal standard. For high-level measurements (>313 ng/l) plasma was directly derivatized by extractive alkylation followed by heptafluorobutylation prior to analysis. A rapid and simple sample work up procedure was elaborated for trace level determinations (>5 ng/l plasma) using solid-phase extraction on C(18) with an absolute recovery of 92.9%. For low-level measurements, the calibration curve was linear in the range of 5 to 625 ng/l (r=0.99993). Inter-assay analytical precisions (RSDs) were 1.29, 2.30 and 2.89% at 39, 156 and 650 ng/l plasma, respectively. For high-level measurements, calibration curve linearity was observed in the range of 0.313 to 20 microg/l (r=0.99998). Inter-assay analytical precisions (RSDs) were 5.17, 1.92, 2.57 and 2.74% at 0.313, 0.625, 2.5 and 10 microg/l plasma, respectively. Postmenopausal plasma was used for spiked plasma samples. Sensitivity and specificity of the presented method allows adequate determination of estriol in human plasma samples.  相似文献   

18.
N-delta-Acetylornithine and S-methylcysteine have been identified as minor components of deproteinized blood plasma of human and bovine blood. Human blood plasma contains a variable amount of acetylornithine, averaging 1.1 +/- 0.4 mumol/l (range 0.8--0.2 mumol/l). Urine contains a very small amount of acetylornithine, approximately 1 nmol/mg creatinine (1 mumol/day). Human blood plasma contains 3.9 +/- 1.9 mumol/l (range 1.4--6.5 mumol/l) of S-methylcysteine. Urine contains approximately 5 nmol/mg creatinine; after acid hydrolysis the amount is increased to 20 nmol/mg creatinine.  相似文献   

19.
The purpose of this study is to examine plasma cortisol and adrenocorticotropin (ACTH) levels following a brief high-intensity bout of exercise. Each subject (n = 6) performed a 1-min bout of exercise on a cycle ergometer at 120% of his maximum O2 uptake. Blood samples were collected at rest, immediately following the exercise bout, and at 5, 15, and 30 min postexercise. Mean (+/- SE) plasma ACTH levels increased significantly (P less than 0.05) from 2.2 +/- 0.4 pmol/l at rest to 6.2 +/- 1.7 pmol/l immediately following exercise. Mean (+/- SE) plasma cortisol levels increased significantly from 0.40 +/- 0.04 mumol/l at rest to 0.52 +/- 0.04 mumol/l at 15 min postexercise. These data show that brief high-intensity exercise results in significant increases in plasma cortisol and ACTH levels. Furthermore, the temporal sequence between the two hormones suggests that the increase in plasma cortisol levels following brief high-intensity exercise is the result of ACTH-induced steroidogenesis in the adrenal cortex.  相似文献   

20.
Cytosolic free Ca2+ level was estimated in rat hepatocytes using the method described by Murphy et al. (1980). For control hepatocytes, a value of 0.20 +/- 0.06 mumol/l was obtained. Insulin increased cytosolic free Ca2+ level to 0.63 +2- 0.24 mumol/l. No net fluxes of Ca2+ across the plasma membrane were observed during incubation of hepatocytes with insulin. Mitochondria were shown to be the main Ca2+ buffering system. FCCP released 77-88% of releasable calcium from the cell. Dibucaine increased cytosolic free Ca2+ level to 1.16 mumol/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号