共查询到20条相似文献,搜索用时 15 毫秒
1.
Joyce Johnson Diwan 《The Journal of membrane biology》1985,84(2):165-171
Summary Rapid uptake of Ba2+ by respiring rat liver mitochondria is accompanied by a transient stimulation of respiration. Following accumulation of Ba2+, e.g. at a concentration of 120 nmol per mg protein, the mitochondria exhibit reduced rates of state 3 and uncoupler-stimulated respiration. ADP-stimulated respiration is inhibited at a lower concentration of Ba2+ than is required to affect uncoupler-stimulated respiration, suggesting a distinct effect of Ba2+ on mechanisms involved in synthesis of ATP. Ba2+, which has an ionic radius similar to that of K+, inhibits unidirectional K+ flux into respiring rat liver mitochondria. This effect on K+ influx is observable at concentrations of Ba2+, e.g. 23 to 37 nmol per mg protein, which cause no significant change in state 4 or uncoupler-stimulated respiration. The accumulated Ba2+ decreases the measuredV
max of K+ influx, while having little effect on the apparentK
m
for K+. The inhibition of K+ influx by Ba2+ is seen in the presence and absence of mersalyl, an activator of K+ influx. In contrast, under the conditions studied, Ba2+ has no apparent effet on the rate of unidirectional K+ efflux. These data are consistent with the idea that K+ may enter and leave mitochondria via spearate mechanisms. 相似文献
2.
Gibberellic acid (GA3) stimulates K+ efflux from the barley (Hordeum vulgare L. cv. Himalaya) aleurone. We investigated the mechanism of K+ flux across the plasma membrane of aleurone protoplasts using patch-clamp techniques. Potassium-ion currents, measured over the entire surface of the protoplast plasma membrane, were induced when the electrochemical gradient for K+ was inward (into the cytoplasm). The magnitude and voltage-dependence of this inward current were the same in protoplasts treated with GA3 and in control protoplasts (no GA3). Inward currents activated by negative shifts in the membrane potential (EM) from the Nernst potential for K+ (EK) showed membrane conductance to be a function of the electrochemical gradient (i.e. EM-EK). Single-channel influx currents of K+ were recorded in small patches of the plasma membrane. These channels had a single-channel conductance of 5–10 pS with 100 mM K+ on the inside and 10 mM K+ on the outside of the plasma membrane. Single-channel currents, like whole-cell currents, were the same in protoplasts treated with GA3 and control protoplasts. Voltage-gated efflux currents were found only in protoplasts tha thad been incubated without GA3. We conclude that K+ influx in the aleurone is mediated by channels and these membrane proteins are not greatly effected by GA3.Abbreviations and symbols FK
Nernst potential for K+
- EM
membrane potential
- Erev
reversal potential
- GA3
gibberellic acid
- Ki
concentration of K+ inside the cell
- Ko
concentration of K+ outside the cell
- R
gas constant
- S
conductance (siemens)
- T
temperature (oK)
-
i
ionic activity coefficient for internal (cytoplasmic) solution
-
o
ionic activity coefficient for external medium 相似文献
3.
Joyce Johnson Diwan Teresa Haley Charlest Moore 《Journal of bioenergetics and biomembranes》1988,20(2):261-271
Effects on Mg++ transport in rat liver mitochondria of three reagents earlier shown to affect mitochondrial K+ transport have been examined. The sulfhydryl reactive reagent phenylarsine oxide, which activates K+ flux into respiring mitochondria, also stimulates Mg++ influx. The K+ analog Ba++, when taken up into the mitochondrial matrix, inhibits influx of both K+ and Mg++. The effect on Mg++ influx is seen only if Mg++, which blocks Ba++ accumulation, is added after a preincubation with Ba++. Thus the inhibition of Mg++ influx appears to require interaction of Ba++ at the matrix side of the inner mitochondrial membrane. Added Ba++ also diminishes observed rates of Mg++ efflux but not K+ efflux. This difference may relate to a higher concentration of Ba++ remaining in the medium in the presence of Mg++ under the conditions of our experiments. Pretreatment of mitochondria with dicyclohexylcarbodiimide (DCCD), under conditions which result in an increase in the apparentKm for K+ of the K+ influx mechanism, results in inhibition of Mg++ influx from media containing approximately 0.2 mM Mg++. The inhibitory effect of DCCD on Mg++ influx is not seen at higher external Mg++ (0.8 mM). This dependence on cation concentration is similar to the dependence on K+ concentration of the inhibitory effect of DCCD on K+ influx. Although mitochondrial Mg++ and K+ transport mechanisms exhibit similar reagent sensitivities, whether Mg++ and K+ share common transport catalysts remains to be established.Abbreviations used: DCCD, dicyclohexylcarbodiimide; PheAsO, phenylarsine oxide. 相似文献
4.
In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance. 相似文献
5.
J J Diwan 《Biochemical and biophysical research communications》1973,50(2):384-391
The energy-linked flux of K+ into rat liver mitochondria is found to be stimulated by the sulfhydryl reagent, N-ethyl maleimide. The stimulation of K+ influx by N-ethyl maleimide is observed only at alkaline external pH. N-ethyl maleimide also stimulates efflux of K+ from the mitochondria. The stimulation by N-ethyl maleimide of K+ influx, but not K+ efflux, is dependent on the availability of metabolic energy. It is suggested that the effect of N-ethyl maleimide on K+ influx may be secondarily the result of an inhibition of phosphate-hydroxyl exchange. The dependence of energy-linked K+ influx on the external pH may be interpreted as evidence for a role of OH? as a counterion accompanying K+ through the mitochondrial pump mechanism. 相似文献
6.
Grant N. Pierce 《Molecular and cellular biochemistry》1987,78(1):89-94
Na+-H+ exchange and passive Na+ flux were investigated in cardiac sarcolemmal vesicles as a function of changing the ionic composition of the reaction media. The inclusion of EGTA in the reaction medium resulted in a potent stumulation of Na+ uptake by Na+-H+ exchange. It was found that millimolar concentrations of Mg2+ and Li+ were capable of inhibiting Na+-H+ exchange by 80%. One mechanism by which these ions may inhibit intravesicular Na+ accumulation by Na+-H+ exchange is via an increase in Na+ efflux. An examination of Na+ efflux kinetics from vesicles pre-loaded with Na+ revealed that Na+, Ca2+, Mg2+ and Li+ could stimulate Na+ efflux. Na+-H+ exchange was potently inhibited by an organic divalent cation, dimenthonium, which screens membrane surface charge. This would suggest that Na+-H+ exchange occurs in the diffuse double layer region of cardiac sarcolemma and this phenomenon is distinctly different from other Na+ transport processes. The results in this study indicate that in addition to a stimulation of Na+ efflux, the inhibitory effects of Mg2+, Ca2+ and Li+ on Na+-H+ exchange may also involve a charge dependent screening of Na+ interactions with the membrane. 相似文献
7.
Joyce Johnson Diwan Jyoti Srivastava Charlest Moore Teresa Haley 《Journal of bioenergetics and biomembranes》1986,18(2):123-134
The dithiol-reactive reagent phenylarsine oxide causes a pH-dependent stimulation of unidirectional K+ flux into respiring rat liver mitochondria. This stimulation is diminished by subsequent addition of either the dithiol 2,3-dimercaptopropanol or the monothiol 2-mercaptoethanol. In contrast, uncoupling by phenylarsine oxide is reversed by 2,3-dimercaptopropanol but not by 2-mercaptoethanol. The data suggest separate sites of interaction of phenylarsine oxide with mechanisms of K+ entry and ATP synthesis. Stimulatory effects of mersalyl and phenylarsine oxide on K+ influx are not additive. Thus PheASO and mersalyl may affect K+ influx at a common site. Pretreatment of the mitochondria with DCCD, which inhibits K+ influx, fails to alter sensitivity to PheAsO or mersalyl. Thus the DCCD binding site associated with the K+ influx mechanism appears to be separate from and independent of the sulfhydryl group(s) which mediate stimulation of K+ influx by PheAsO and mersalyl.PheAsO, like mersalyl, also increases the rate of unidirectional K+ efflux from respiring mitochondria. The combined presence of PheAsO plus mersalyl causes a greater stimulation of K+ efflux than is observed with either reagent alone.Abbreviations used: BAL, British AntilLewisite or 2,3-dimercaptopropanol; DCCD, dicyclohexylcarbodiimide; DBCT, dibutylchloromethyltin chloride; 2-ME, 2-mercaptoethanol; PheAsO, phenylarsine oxide. 相似文献
8.
Na+ K+ pump and passive K+ transport in large and small red cell populations of anemic high and low K+ sheep 总被引:1,自引:0,他引:1
Reticulocytes, isolated by centrifugal elutriation from massively bled sheep and identified by cytometric techniques, were analyzed with respect to their cation transport properties. In sheep with genetically high K+ (HK) or low K+ (LK) red cells, two reticulocyte types were distinguished by conventional or fluorescence-staining techniques 5-6 days after hemorrhage: Large reticulocytes as part of a newly formed macrocytic (M) erythrocyte population, and small reticulocytes present among the adult red cell population (volume population III of normal sheep blood, Valet et al., 1978). Although cellular reticulin disappeared within a few days, the M-cell population persisted throughout weeks in the peripheral circulation permitting a transport study of in vivo maturation. At all times, M cells of LK sheep had lower K+ and higher Na+ contents than M cells of HK sheep. Regardless of the sheep genotypes, M cells apparently reduced their volume during their first days in circulation; however, throughout the observation period, they did not attain that characteristic for adult red cells. Both ouabain-sensitive K+ pump and ouabain-insensitive K+ leak fluxes were elevated in M cells of both HK and LK sheep. The increased K+ pump flux was mainly due to higher K+ pump turnover rather than to the modestly increased number of pumps as measured by [3H]ouabain binding. In contrast, small reticulocytes enriched from separated volume population III cells by a Percoll-density gradient exhibited transport parameters close to their prospective mature HK or LK red cells. The data support the concept that the M cells derived from emergency reticulocytes while the small reticulocytes represented precursors of normal red cell maturation. The Na+ and K+ composition found in M cells of HK and LK sheep, respectively, suggest development of the LK steady state at or prior to the reticulocyte state, a finding consistent with that of Lee and Kirk (1982) on low K+ dog red cells. 相似文献
9.
Gema Ruiz-Hurtado Linwei Li María Fernández-Velasco Angélica Rueda Florence Lefebvre Yueyi Wang Philippe Mateo Cécile Cassan Barnabas Gellen Jean Pierre Benitah Ana María Gómez 《The Journal of general physiology》2015,146(4):295-306
Abnormalities in cardiomyocyte Ca2+ handling contribute to impaired contractile function in heart failure (HF). Experiments on single ryanodine receptors (RyRs) incorporated into lipid bilayers have indicated that RyRs from failing hearts are more active than those from healthy hearts. Here, we analyzed spontaneous Ca2+ sparks (brief, localized increased in [Ca2+]i) to evaluate RyR cluster activity in situ in a mouse post-myocardial infarction (PMI) model of HF. The cardiac ejection fraction of PMI mice was reduced to ∼30% of that of sham-operated (sham) mice, and their cardiomyocytes were hypertrophied. The [Ca2+]i transient amplitude and sarcoplasmic reticulum (SR) Ca2+ load were decreased in intact PMI cardiomyocytes compared with those from sham mice, and spontaneous Ca2+ sparks were less frequent, whereas the fractional release and the frequency of Ca2+ waves were both increased, suggesting higher RyR activity. In permeabilized cardiomyocytes, in which the internal solution can be controlled, Ca2+ sparks were more frequent in PMI cells (under conditions of similar SR Ca2+ load), confirming the enhanced RyR activity. However, in intact cells from PMI mice, the Ca2+ sparks frequency normalized by the SR Ca2+ load in that cell were reduced compared with those in sham mice, indicating that the cytosolic environment in intact cells contributes to the decrease in Ca2+ spark frequency. Indeed, using an internal “failing solution” with less ATP (as found in HF), we observed a dramatic decrease in Ca2+ spark frequency in permeabilized PMI and sham myocytes. In conclusion, our data show that, even if isolated RyR channels show more activity in HF, concomitant alterations in intracellular media composition and SR Ca2+ load may mask these effects at the Ca2+ spark level in intact cells. Nonetheless, in this scenario, the probability of arrhythmogenic Ca2+ waves is enhanced, and they play a potential role in the increase in arrhythmia events in HF patients. 相似文献
10.
Kreydiyyeh SI Riman S Serhan M Kassardjian A 《Prostaglandins & other lipid mediators》2007,83(4):295-303
The effect of TNF-alpha on liver Na(+)-K(+) ATPase was studied in Sprague-Dawley rats and in HepG2 cells. TNF-alpha was injected intraperitoneally to rats and 4h later the liver was isolated and the activity and protein expression of hepatic Na(+)-K(+) ATPase studied. The cytokine caused a significant down-regulation of the ATPase and a decrease in its activity. This effect disappeared in presence of indomethacin, an inhibitor of COX enzymes, and PGE2 injected to the animals imitated the effect of TNF-alpha. The observed in vivo effects of TNF and PGE2 on the pump appeared again when HepG2 cells were treated with the cytokine or the prostaglandin. The application of different agonist and antagonist to EP receptors showed that the effect of PGE2 is mediated via EP2 receptors. It was concluded that TNF-alpha induces in hepatocytes, PGE2 production which in turn reduces the activity and protein expression of the Na(+)-K(+) ATPase by activating EP2 receptors. 相似文献
11.
Characterization of K+-dependent and K+-independentp-nitrophenylphosphatase activity of synaptosomes
M. Guerra Marichal A. Rodríguez Del Castillo P. Martín Vasallo E. Battaner Arias 《Neurochemical research》1993,18(7):751-758
These experiments examined effects of several ligands on the K+
p-nitrophenylphosphatase activity of the (Na+,K+)-ATPase in membranes of a rat brain cortex synaptosomal preparation. K+-independent hydrolysis of this substrate by the synaptosomal preparation was studied in parallel; the rate of hydrolysis in the absence of K+ was approximately 75% less than that observed when K+ was included in the incubation medium. The response to the H+ concentrations was different: K+-independent activity showed a pH optimum around 6.5–7.0, while the K+-dependent activity was relatively low at this pH range. Ouabain (0.1 mM) inhibited K+-dependent activity 50%; a concentration 10 times higher did not produce any appreciable effect on the K+-independent activity. Na+ did not affect K+-independent activity at all, while the same ligand concentration inhibited sharply the K+-dependent activity; this inhibition was not competitive with the substrate,p-nitrophenyl phosphate. K+-dependent activity was stimulated by Mg2+ with low affinity (millimolar range), and 3 mM Mg2+ produced a slight stimulation of the activity in absence of K+, which could be interpreted as Mg2+ occupying the K+ sites. Ca2+ had no appreciable effect on the activity in the absence of K+. However, in the presence of K+ a sharp inhibition was found with all Ca2+ concentrations studied. ATP (0.5 mM) did not affect the K+-independent activity, but this nucleotide behaved as a competitive inhibitor top-nitrophenylphosphate. Pi inhibited activity in the presence of K+, competively to the substrate, so it could be considered as the second product of the reaction sequence.Abbreviations used
p-NPP
p-nitrophenylphosphate
-
p-NPPase
rho-nitrophenylphosphatase activity 相似文献
12.
Alterations by saponins of passive Ca2+ permeability and Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles 总被引:1,自引:0,他引:1
Saponins can both permeabilize cell plasma membranes and cause positive inotropic effects in isolated cardiac muscles. Different saponins vary in their relative abilities to cause each effect suggesting that different mechanisms of action may be involved. To investigate this possibility, we have compared the effects of seven different saponins on the passive Ca2+ permeability and Na+-Ca2+ exchange activity of isolated canine cardiac sarcolemmal membranes. Saponins having hemolytic activity reversibly increased the passive efflux of Ca2+ from sarcolemmal vesicles preloaded with 45Ca2+ with the following order of potency: echinoside-A greater than echinoside-B greater than holothurin-A greater than holothurin-B greater than sakuraso-saponin. Ginsenoside-Rd and desacyl-jego-saponin, which lack hemolytic activity, had no significant effect on this variable. The saponins also stimulated Na+-Ca2+ exchange activity measured as Na+-dependent Ca2+ uptake by sarcolemmal vesicles. Ginsenoside-Rd and desacyl-jego-seponin, which did not affect passive Ca2+ permeability, stimulated the uptake, while in contrast, echinoside-A and -B only slightly increased or decreased this latter variable. Thus, the abilities of these compounds to enhance Na+-Ca2+ exchange activity seem to be inversely related to their abilities to increase the Ca2+ permeability. Effects by the echinosides on Na+-Ca2+ exchange may be masked by the loss of Ca2+ from the vesicles due to the increased permeability. These results suggest that the saponins interact with membrane constituent(s) that can influence the passive Ca2+ permeability and the Na+-Ca2+ exchange activity of cardiac sarcolemmal membranes. 相似文献
13.
Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity 总被引:4,自引:0,他引:4
The plasticity of synapses within neural circuits is regulated by activity, but the underlying mechanisms remain elusive. Using the dye FM1-43 to directly image presynaptic function, we found that large numbers of presynaptic terminals in hippocampal cultures have a low release probability. While these terminals were not readily modifiable, a transient but not permanent long-term reduction of network activity or Ca2+ influx could increase their modifiability. This modulation of plasticity was mediated by Ca2+ flux through NMDA and voltage-gated calcium channels and was lost within 48 hr. A more permanent enhancement of synaptic plasticity was achieved by selectively reducing the Ca2+ flux associated with uncorrelated activity via adjustment of the voltage-dependent Mg2+ block of the NMDAR. Upregulation of NR2B-containing NMDARs induced by this treatment is an important but not sole contributor to the enhancement of plasticity. Thus, quantity and quality of activity have differential effects on the intrinsic plasticity of neurons. 相似文献
14.
The pathway of unidirectional K+ flux into respiring mitochondria is sensitive to the protein reactive compounds mersalyl and dicyclohexylcarbodiimide (DCCD). When treated with either of these reagents, mitochondria retain sensitivity to other reagents which affect K+ flux into untreated mitochondria. The present studies show that the K+ influx mechanism modified by pretreatment with DCCD remains sensitive to inhibition by quinine. K+ influx stimulated by mersalyl, in the absence of exogenous Ca++, retains sensitivity to inhibition by quinine and to some extent by Mg++. The results support the conclusion that K+ uptake by mitochondria modified by mersalyl or DCCD occurs via the same proteinaceous pathway as that which mediates K+ uptake by untreated mitochondria. 相似文献
15.
Naomi Kraus-Friedmann L. Hummel A. Radominska-Pyrek J. M. Little R. Lester 《Molecular and cellular biochemistry》1982,44(3):173-1801
Summary In the perfused rat liver administration of glucagon was shown to result in a transiently increased uptake of K+, indicating the possible involvement of the Na+, K+-ATPase. Direct measurement of the activity of Na+, K+-ATPase revealed a two-fold stimulation of the enzyme by glucagon. The effect of glucagon on the activity of the enzyme was immediate. Simultaneously with the increase in the activity of the Na+, K+-ATPase, the activity of Mg2+-ATPase decreased. In order to evaluate whether the activation of the Na+, K+-ATPase by glucagon is related to the metabolic effects of the hormone, experimental conditions known to interfere with the activity of the enzyme were employed and glucagon stimulation of Ca2+-efflux, mitochondrial metabolism and gluconeogenesis were measured. K+-free perfusate, high K+ perfusate or ouabain interfered to varying degrees with the glucagon stimulation of these responses. The combination of K+-free perfusate and ouabain almost completely abolished the glucagon stimulation of all three parameters. These results demonstrate the glucagon stimulation of Na+, K+-ATPase and raise the possibility that the activation of the enzyme by glucagon might be a necessary link for the manifestation of its metabolic effects. 相似文献
16.
Volatile anesthetics inhibit the ion flux through Ca2+-activated K+ channels of rat glioma C6 cells 总被引:2,自引:0,他引:2
Ca2+-activated K+ channels in rat glioma C6 cells were investigated using monolayers of these cells in petri dishes. The ion flux through the channels was studied with 86Rb+ after addition of a Ca2+-ionophore to the incubation medium. Both the influx and efflux of 86Rb+ through these Ca2+-activated K+ channels were inhibited by the general anesthetic halothane (at clinical concentrations). Other volatile anesthetics such as isoflurane, enflurane and methoxyflurane also inhibited the Ca2+-activated K+ channels at clinical concentrations. Inhibition of these channels by general anesthetics could have profound effects on signal transmission in the brain. 相似文献
17.
J Pascual L Sterin-Borda M Wald E S Borda 《Prostaglandins, leukotrienes, and essential fatty acids》1988,33(1):53-59
The biological properties of Thromboxane B2 (TXB2) on isolated rat heart were studied. Its actions were compared with U-46619 a Thromboxane A2 mimetic compound and with isoproterenol. TXB2 induced a concentration-dependent increase in contractility, that was non-competitively antagonized by propranolol. In addition TXB2 inhibited Na+ + K+-ATPase activity at the same concentrations that influenced the mechanical activity. Inhibition of beta-adrenoceptors efficiently blocked the inhibitory action of TXB2 upon Na+ + K+-ATPase-activity. Isoproterenol simulated the positive inotropic effect and the inhibitory action of TXB2 on Na+ + K+-ATPase-activity. In contrast, U-46619 did not alter the basal dF/dt, neither the enzyme activity. The foregoing results suggest that TXB2 resembles the biological effect of catecholamines-inducing stimulation of myocardial contractility and inhibition of Na+ + K+-ATPase activity. 相似文献
18.
V. N. Kazachenko M. E. Astashev A. A. Grinevich 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2007,1(2):169-175
The Multifractal version of the Detrended Fluctuation Analysis was used for the study of non-stationary dwell time series of Ca2+-activated K+ channels (KCa channels) in cultured kidney Vero cells and of voltage-dependent K+ channels (Kv channels) in mollusc (Lymnaea stagnalis) neurons. The data obtained can briefly be summarized as follows: (i) The generalized fluctuation function F q (l) strongly depends on the index (order) q; for monofractal time series, such dependence is nonexistent; (ii) The relationship between the scaling exponent τ commonly employed in standard multifractal analysis and q is characterized by two slopes and a transitory region, whereas monofractal processes are characterized by the linear dependence; (iii) The relationship between the singularity spectrum f(h) and the Hurst exponent h is bell-shaped, while in the case of monofractal processes it is represented by a single point f(h) = 1. Random mixing of the time series resulted in the narrowing of the spectrum f(h) and a shift of f(h) towards the value more characteristic of stochastic (monofractal) processes (h ~ 0.5). It is concluded that the activities of both KCa channels in kidney Vero cells and of KV channels in mollusc (Lymnaea stagnalis) neurons can be characterized as multifractal processes. 相似文献
19.
20.
Potassium influx and efflux were studied in human peripheral blood lymphocytes equilibrated over a wide range of external K+ levels. The absence of a net ion movement throughout the flux study was established, trapped space was measured with polyethylene glycol, and cells were separated from incubation media without exposure to any washing solution. There are both rapid and slow cellular fractions of 42K influx and efflux, and half-times of exchange of around 2 minutes, and 400 minutes, respectively. The rapid component is identical in magnitude to the smaller non-saturable component of cell K+, while the slow component is identified with the larger, sigmoidal, saturable component of cell K+ that was previously shown to follow a cooperative adsorption isotherm. These results support the association-induction hypothesis, which predicts (a) a rapid fraction of K+ flux due to equilibration of ion within cell water existing in a state of polarized multilayers, and (b) a slower component of K+ flux limited by adsorption onto, or desorption from, fixed anionic sites existing throughout the cell. K+ influx, as a function of external K+, showed a triphasic relation with a peak around 1 mM K+ex, then a trough around 4mM K+ex, and then a gradual rise. This relation was readily explained, in terms of the association-induction hypothesis, by the cooperative interaction between, and ion occupancy of, fixed anionic sites that adsorb K+ or Na+. 相似文献